Merge pull request #27553 from MjSeven/20220912_microservices_flask

翻译完成
This commit is contained in:
Xingyu.Wang 2022-10-15 15:29:15 +08:00 committed by GitHub
commit 29361eed22
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 528 additions and 525 deletions

View File

@ -1,525 +0,0 @@
[#]: subject: "Python Microservices Using Flask on Kubernetes"
[#]: via: "https://www.opensourceforu.com/2022/09/python-microservices-using-flask-on-kubernetes/"
[#]: author: "Krishna Mohan Koyya https://www.opensourceforu.com/author/krishna-mohan-koyya/"
[#]: collector: "lkxed"
[#]: translator: "MjSeven"
[#]: reviewer: " "
[#]: publisher: " "
[#]: url: " "
Python Microservices Using Flask on Kubernetes
======
*Microservices follow domain driven design (DDD), irrespective of the platform on which they are developed. Python microservices are not an exception. The object-oriented features of Python 3 make it even easier to model services on the lines of DDD. Part 10 of this series demonstrates how to deploy FindService of user management system as a Python microservice on Kubernetes.*
The power of microservices architecture lies partly in its polyglot nature. The enterprises decompose their functionality into a set of microservices and each team chooses a platform of its choice.
Our user management system was already decomposed into four microservices, namely, AddService, FindService, SearchService and JournalService. The AddService was developed on the Java platform and deployed on the Kubernetes cluster for resilience and scalability. This doesnt mean that the remaining services are also developed on Java. We are free to choose a suitable platform for individual services.
Let us pick Python as the platform for developing the FindService. The model for FindService has already been designed (refer to the March 2022 issue of Open Source For You). We only need to convert this model into code and configuration.
### The Pythonic approach
Python is a general-purpose programming language that has been around for about three decades. In the early days, it was the first choice for automation scripting. However, with frameworks like Django and Flask, its popularity has been growing and it is now adopted in various other domains like enterprise application development. Data science and machine learning pushed the envelope further and Python is now one of the top three programming languages.
Many people attribute the success of Python to its ease of coding. This is only partially true. As long as your objective is to develop small scripts, Python is just like a toy. You love it. However, the moment you enter the domain of serious large-scale application development, you will have to handle lots of ifs and buts, and Python becomes as good as or as bad as any other platform. For example, take an object-oriented approach! Many Python developers may not even be aware of the fact that Python supports classes, inheritance, etc. Python does support full-blown object-oriented development, but in its own way — the Pythonic way! Let us explore it!
### The domain model
AddService adds the users to the system by saving the data into a MySQL database. The objective of the FindService is to offer a REST API to find the users by their name. The domain model is reproduced in Figure 1. It primarily consists of value objects like Name, PhoneNumber along with User entity and UserRepository.
![Figure 1: The domain model of FindService][1]
Let us begin with the Name. Since it is a value object, it must be validated by the time it is created and must remain immutable. The basic structure looks like this:
```
class Name:
value: str
def __post_init__(self):
if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:
raise ValueError(“Invalid Name”)
```
As you can see, the Name consists of a value attribute of type str. As part of the post initialization, the value is validated.
Python 3.7 offers @dataclass decorator, which offers many features of a data-carrying class out-of-the-box like constructors, comparison operators, etc.
Following is the decorated Name:
```
from dataclasses import dataclass
@dataclass
class Name:
value: str
def __post_init__(self):
if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:
raise ValueError(“Invalid Name”)
```
The following code can create an object Name:
```
name = Name(“Krishna”)
```
The value attribute can be read or written as follows:
```
name.value = “Mohan”
print(name.value)
```
Another Name object can be compared as easily as follows:
```
other = Name(“Mohan)
if name == other: print(“same”)
```
As you can see, the objects are compared by their values, not by their references. This is all out-of-the-box. We can also make the object immutable, by freezing. Here is the final version of Name as a value object:
```
from dataclasses import dataclass
@dataclass(frozen=True)
class Name:
value: str
def __post_init__(self):
if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:
raise ValueError(“Invalid Name”)
```
The PhoneNumber also follows a similar approach, as it is also a value object:
```
@dataclass(frozen=True)
class PhoneNumber:
value: int
def __post_init__(self):
if self.value < 9000000000:
raise ValueError(“Invalid Phone Number”)
```
The User class is an entity, not a value object. In other words, the User is not immutable. Here is the structure:
```
from dataclasses import dataclass
import datetime
@dataclass
class User:
_name: Name
_phone: PhoneNumber
_since: datetime.datetime
def __post_init__(self):
if self._name is None or self._phone is None:
raise ValueError(“Invalid user”)
if self._since is None:
self.since = datetime.datetime.now()
```
You can observe that the User is not frozen as we want it to be mutable. However, we do not want all the properties mutable. The identity field like _name and fields like _since are not expected to be modified. Then, how can this be controlled?
Python 3 offers the so-called Descriptor protocol. It helps us in defining the getters and setters appropriately. Let us add the getters to all the three fields of User using the @property decorator:
```
@property
def name(self) -> Name:
return self._name
@property
def phone(self) -> PhoneNumber:
return self._phone
@property
def since(self) -> datetime.datetime:
return self._since
```
And the setter for the phone field can be added using @<field>.setter decoration:
```
@phone.setter
def phone(self, phone: PhoneNumber) -> None:
if phone is None:
raise ValueError(“Invalid phone”)
self._phone = phone
```
The User can also be given a method for easy print representation by overriding the __str__() function:
```
def __str__(self):
return self.name.value + “ [“ + str(self.phone.value) + “] since “ + str(self.since)
```
With this the entities and the value objects of the domain model are ready. Creating an exception class is as easy as follows:
```
class UserNotFoundException(Exception):
pass
```
The only other one remaining in the domain model is the UserRepository. Python offers a useful module called abc for building abstract methods and abstract classes. Since UserRepository is only an interface, we can use the abc package.
Any Python class that extends abc.ABC becomes abstract. Any function with the @abc.abstractmethod decorator becomes an abstract function. Here is the resultant structure of UserRepository:
```
from abc import ABC, abstractmethod
class UserRepository(ABC):
@abstractmethod
def fetch(self, name:Name) -> User:
pass
```
The UserRepository follows the repository pattern. In other words, it offers appropriate CRUD operations on the User entity without exposing the underlying data storage semantics. In our case, we need only fetch() operation since FindService only finds the users.
Since the UserRepository is an abstract class, we cannot create instance objects from this class. A concrete class must implement this abstract class for object creation.The data layer
The UserRepositoryImpl offers the concrete implementation of UserRepository:
```
class UserRepositoryImpl(UserRepository):
def fetch(self, name:Name) -> User: pass
```
Since the AddService stores the data of the users in a MySQL database server, the UserRepositoryImpl also must connect to the same database server to retrieve the data. The code for connecting to the database is given below. Observe that we are using the connector library of MySQL.
```
from mysql.connector import connect, Error
```
```
class UserRepositoryImpl(UserRepository):
def fetch(self, name:Name) -> User:
try:
with connect(
host=”mysqldb”,
user=”root”,
password=”admin”,
database=”glarimy”,
) as connection:
with connection.cursor() as cursor:
cursor.execute(“SELECT * FROM ums_users where name=%s”, (name.value,))
row = cursor.fetchone()
if cursor.rowcount == -1:
raise UserNotFoundException()
else:
return User(Name(row[0]), PhoneNumber(row[1]), row[2])
except Error as e:
raise e
```
In the above snippet, we are connecting to a database server named mysqldb using root as the user and admin as the password, in order to use the database schema named glarimy. It is fine to have such information in the code for an illustration, but surely not a suggested approach in production as it exposes sensitive information.
The logic of the fetch() operation is quite intuitive. It executes a SELECT query against the ums_users table. Recollect that the AddService was writing the user data into the same table. In case the SELECT query returns no records, the fetch() function throws UserNotFoundException. Otherwise, it constructs the User entity from the record and returns it to the caller. Nothing unusual.
### The application layer
And finally, we need to build the application layer. The model is reproduced in Figure 2. It consists of just two classes: a controller and a DTO.
![Figure 2: The application layer of FindService][2]
As we already know, a DTO is just a data container without any business logic. It is primarily used for carrying data between the FindService and the outside world. We just offer a way to convert the UserRecord into a dictionary for JSON marshalling in the REST layer:
```
class UserRecord:
def toJSON(self):
return {
“name”: self.name,
“phone”: self.phone,
“since”: self.since
}
```
The job of a controller is to convert DTOs to domain objects for invoking the domain services and vice versa, as can be observed in the find() operation.
```
class UserController:
def __init__(self):
self._repo = UserRepositoryImpl()
def find(self, name: str):
try:
user: User = self._repo.fetch(Name(name))
record: UserRecord = UserRecord()
record.name = user.name.value
record.phone = user.phone.value
record.since = user.since
return record
except UserNotFoundException as e:
return None
```
The find() operation receives a string as a name, converts it as a Name object and invokes the UserRepository to fetch the corresponding User object. If it is found, a UserRecord is created by using the retrieved User object. Recollect that it is necessary to convert the domain objects as DTO to hide the domain model from the external world.
The UserController need not have multiple instances. It can be a singleton as well. By overriding the __new__ operation, it can be modelled as a singleton:
```
class UserController:
def __new__(self):
if not hasattr(self, instance):
self.instance = super().__new__(self)
return self.instance
def __init__(self):
self._repo = UserRepositoryImpl()
def find(self, name: str):
try:
user: User = self._repo.fetch(Name(name))
record: UserRecord = UserRecord()
record.name = user.name.getValue()
record.phone = user.phone.getValue()
record.since = user.since
return record
except UserNotFoundException as e:
return None
```
We are done with implementing the model of the FindService fully. The only task remaining is to expose it as a REST service.
### The REST API
Our FindService offers only one API and that is to find a user by name. The obvious URI is as follows:
```
GET /user/{name}
```
This API is expected to find the user with the supplied name and returns the details of phone number, etc, of the user in JSON format. In case no such user is found, the API is expected to return a 404 status.
We can use the Flask framework to build the REST API. This framework was originally built for developing Web applications using Python. It is further extended to support the REST views besides the HTML views. We pick this framework for its simplicity.
Start by creating a Flask application:
```
from flask import Flask
app = Flask(__name__)
```
Then define the routes for the Flask application as simple functions:
```
@app.route(/user/<name>)
def get(name): pass
```
Observe that the @app.route is mapped to the API /user/<name> on one side and to the function get() on the other side.
As you may already have figured out, this get() function will be invoked every time the user accesses the API with a URI like http://server:port/user/Krishna. Flask is intelligent enough to extract Krishna as the name from the URI and pass it to the get() function.
The get() function is straightforward. It asks the controller to find the user and returns the same after marshalling it to the JSON format along with the usual HTTP headers. In case the controller returns None, the get() function returns the response with an appropriate HTTP status.
```
from flask import jsonify, abort
controller = UserController()
record = controller.find(name)
if record is None:
abort(404)
else:
resp = jsonify(record.toJSON())
resp.status_code = 200
return resp
```
And, finally, the Flask app needs to be served. We can use the waitress server for this purpose.
```
from waitress import serve
serve(app, host=”0.0.0.0”, port=8080)
```
In the above snippet, the app is served on port 8080 on the local host.
The final code looks like this:
```
from flask import Flask, jsonify, abort
from waitress import serve
app = Flask(__name__)
@app.route(/user/<name>)
def get(name):
controller = UserController()
record = controller.find(name)
if record is None:
abort(404)
else:
resp = jsonify(record.toJSON())
resp.status_code = 200
return resp
serve(app, host=”0.0.0.0”, port=8080)
```
### Deployment
The FindService is now ready with code. It has its domain model, data layer, and application layer besides the REST API. The next step is to build the service, containerise it, and then deploy it on Kubernetes. The process is in no way different from any other service, though there are some Python-specific steps.
Before proceeding further, let us have a look at the folder/file structure:
```
+ ums-find-service
+ ums
- domain.py
- data.py
- app.py
- Dockerfile
- requirements.txt
- kube-find-deployment.yml
```
As you can observe, the whole work is under the ums-find-service folder. It contains the code in the ums folder and configurations in Dockerfile, requirements.txt and kube-find-deployment.yml files.
The domain.py consists of the domain model classes, data.py consists of UserRepositoryImpl and app.py consists of the rest of the code. Since we have seen the code already, let us move on to the configuration files.
The first one is the file named requirements.txt. It declares the external dependencies for the Python system to download and install. We need to populate it with every external Python module that we use in the FindService. As you know, we used MySQL connector, Flask and Waitress modules. Hence the following is the content of the requirements.txt.
```
Flask==2.1.1
Flask_RESTful
mysql-connector-python
waitress
```
The second step is to declare the manifestation for dockerisation in Dockerfile. Here it is:
```
FROM python:3.8-slim-buster
WORKDIR /ums
ADD ums /ums
ADD requirements.txt requirements.txt
RUN pip3 install -r requirements.txt
EXPOSE 8080
ENTRYPOINT [“python”]
CMD [“/ums/app.py”]
```
In summary, we used Python 3.8 as the baseline and moved our code from the ums folder to a corresponding folder in the Docker container, besides moving the requirements.txt. Then we instructed the container to run the pip3 install command. And, finally, we exposed port 8080 (since the waitress was running on that port).
In order to run the service, we instructed the container to use the following command:
```
python /ums/app.py
```
Once the Dockerfile is ready, run the following command from within the ums-find-service folder to create the Dockerised image:
```
docker build -t glarimy/ums-find-service
```
It creates the Docker image, which can be found using the following command:
```
docker images
```
Try pushing the image to the Docker Hub as appropriate. You may log in to Docker as well.
```
docker login
docker push glarimy/ums-find-service
```
And the last step is to build the manifest for the Kubernetes deployment.
We have already covered the way to set up the Kubernetes cluster, and deploy and use services, in the previous part. I am assuming that we still have the manifest file we used in the previous part for deploying the AddService, MySQL, Kafka and Zookeeper. We only need to add the following entries into the kube-find-deployment.yml file:
```
apiVersion: apps/v1
kind: Deployment
metadata:
name: ums-find-service
labels:
app: ums-find-service
spec:
replicas: 3
selector:
matchLabels:
app: ums-find-service
template:
metadata:
labels:
app: ums-find-service
spec:
containers:
- name: ums-find-service
image: glarimy/ums-find-service
ports:
- containerPort: 8080
---
apiVersion: v1
kind: Service
metadata:
name: ums-find-service
labels:
name: ums-find-service
spec:
type: LoadBalancer
ports:
- port: 8080
selector:
app: ums-find-service
```
The first part of the above manifest declares a deployment of FindService from the image glarimy/ums-find-service with three replicas. It also exposes port 8080. And the latter part of the manifest declares a Kubernetes service as the front-end for the FindService deployment. Recollect that the MySQL service in the name of mysqldb was already part of the above manifest from the previous part.
Run the following command to deploy the manifest on a Kubernetes cluster:
```
kubectl create -f kube-find-deployment.yml
```
Once the deployment is finished, you can verify the pods and services using the following command:
```
kubectl get services
```
It gives an output as shown in Figure 3.
![Figure 3: Kubernetes services][3]
It lists all the services running on the cluster. Make a note of the external-ip of the FindService and use the curl command to invoke the service:
```
curl http://10.98.45.187:8080/user/KrishnaMohan
```
Note that the IP address 10.98.45.187 corresponds to the FindService, as found in Figure 3.
If we have used the AddService to create a user by the name KrishnaMohan, the above curl command looks like what is shown in Figure 4.
![Figure 4: FindService][4]
With the AddService and FindService, along with the required back-end services for storage and messaging, the architecture of the user management system (UMS) stands as shown in Figure 5, at this point. You can observe that the end-user uses the IP address of the ums-add-service for adding a new user, whereas it uses the IP address of the ums-find-service for finding existing users. Each of these Kubernetes services are backed by three pods with the corresponding containers. Also note that the same mysqldb service is used for storing and retrieving the user data.
![Figure 5: UMS with AddService and FindService][5]
### What about the other services?
The UMS consists of two more services, namely, SearchService and JournalService. We will design these services in the next part of this series on the Node platform, and deploy them on the same Kubernetes cluster to demonstrate the real power of polyglot microservices architecture. We will conclude by observing some design patterns pertaining to microservices.
--------------------------------------------------------------------------------
via: https://www.opensourceforu.com/2022/09/python-microservices-using-flask-on-kubernetes/
作者:[Krishna Mohan Koyya][a]
选题:[lkxed][b]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.opensourceforu.com/author/krishna-mohan-koyya/
[b]: https://github.com/lkxed
[1]: https://www.opensourceforu.com/wp-content/uploads/2022/08/Figure-1-The-domain-model-of-FindService-1.png
[2]: https://www.opensourceforu.com/wp-content/uploads/2022/08/Figure-2-The-application-layer-of-FindService.png
[3]: https://www.opensourceforu.com/wp-content/uploads/2022/08/Figure-3-Kubernetes-services-1.png
[4]: https://www.opensourceforu.com/wp-content/uploads/2022/08/Figure-4-FindService.png
[5]: https://www.opensourceforu.com/wp-content/uploads/2022/08/Figure-5-UMS-with-AddService-and-FindService.png

View File

@ -0,0 +1,528 @@
[#]: subject: "Python Microservices Using Flask on Kubernetes"
[#]: via: "https://www.opensourceforu.com/2022/09/python-microservices-using-flask-on-kubernetes/"
[#]: author: "Krishna Mohan Koyya https://www.opensourceforu.com/author/krishna-mohan-koyya/"
[#]: collector: "lkxed"
[#]: translator: "MjSeven"
[#]: reviewer: " "
[#]: publisher: " "
[#]: url: " "
在 Kubernetes 上使用 Flask 的 Python 微服务
======
![Python 微服务][6]
*微服务遵循领域驱动设计DDD与开发平台无关。Python 微服务也不例外。Python3 的面向对象特性使得按照 DDD 对服务进行建模变得更加容易。本系列的第 10 部分演示了如何将用户管理系统的查找服务作为 Python 微服务部署在 Kubernetes 上。*
微服务架构的强大之处在于它的多语言性。企业将其功能分解为一组微服务,每个团队自由选择一个平台。
我们的用户管理系统已经分解为四个微服务,分别是添加、查找、搜索和日志服务。添加服务在 Java 平台上开发并部署在 Kubernetes 集群上,以实现弹性和可扩展性。这并不意味着其余的服务也要使用 Java 开发,我们可以自由选择适合个人服务的平台。
让我们选择 Python 作为开发查找服务的平台。查找服务的模型已经设计好了(参考 2022 年 3 月份的文章),我们只需要将这个模型转换为代码和配置。
### Pythonic 方法
Python 是一种通用编程语言,已经存在了大约 30 年。早期,它是自动化脚本的首选。然而,随着 Django 和 Flask 等框架的出现它的受欢迎程度越来越高现在各种领域中都在应用它如企业应用程序开发。数据科学和机器学习进一步推动了它的发展Python 现在是三大编程语言之一。
许多人将 Python 的成功归功于它容易编码。这只是一部分原因。只要你的目标是开发小型脚本Python 就像一个玩具,你会非常喜欢它。然而,当你进入严肃的大规模应用程序开发领域时,你将不得不处理大量的 if 和 elsePython 变得与任何其他平台一样好或一样坏。例如,采用一种面向对象的方法!许多 Python 开发人员甚至可能没意识到 Python 支持类、继承等功能。Python 确实支持成熟的面向对象开发,但是有它自己的方式 -- Pythonic让我们探索一下
### 领域模型
添加服务通过将数据保存到一个 MySQL 数据库中来将用户添加到系统中。查找服务的目标是提供一个 REST API 按用户名查找用户。域模型如图 1 所示。它主要由一些值对象组成,如用户实体的用户名、电话以及 UserRepository。
![图 1: 查找服务的域模型][1]
让我们从用户名开始。由于它是一个值对象,因此必须在创建时进行验证,并且必须保持不可变。基本结构如所示:
```python
class Name:
value: str
def __post_init__(self):
if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:
raise ValueError("Invalid Name")
```
如你所见,用户名包含一个字符串类型的值。作为后期初始化的一部分,我们会验证它。
Python 3.7 提供了 @dataclass 装饰器,它提供了许多开箱即用的数据承载类的功能,如构造函数、比较运算符等。如下是装饰后的 Name 类:
```python
from dataclasses import dataclass
@dataclass
class Name:
value: str
def __post_init__(self):
if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:
raise ValueError("Invalid Name")
```
以下代码可以创建一个 Name 对象:
```python
name = Name("Krishna")
```
value 属性可以按照如下方式读取或写入:
```python
name.value = "Mohan"
print(name.value)
```
可以很容易地与另一个 Name 对象比较,如下所示:
```python
other = Name("Mohan")
if name == other:
print("same")
```
如你所见,对象比较的是值而不是引用。这一切都是开箱即用的。我们还可以通过冻结对象使对象不可变。这是 Name 值对象的最终版本:
```python
from dataclasses import dataclass
@dataclass(frozen=True)
class Name:
value: str
def __post_init__(self):
if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:
raise ValueError("Invalid Name")
```
电话也遵循类似的方法,因为它也是一个值对象:
```python
@dataclass(frozen=True)
class PhoneNumber:
value: int
def __post_init__(self):
if self.value < 9000000000:
raise ValueError("Invalid Phone Number")
```
用户类是一个实体,不是一个值对象。换句话说,用户是可变的。以下是结构:
```python
from dataclasses import dataclass
import datetime
@dataclass
class User:
_name: Name
_phone: PhoneNumber
_since: datetime.datetime
def __post_init__(self):
if self._name is None or self._phone is None:
raise ValueError("Invalid user")
if self._since is None:
self.since = datetime.datetime.now()
```
你能观察到用户并没有冻结,因为我们希望它是可变的。但是,我们不希望所有属性都是可变的。标识字段如 _name 和 _since 是希望不会修改的。那么,这如何做到呢?
Python3 提供了所谓的描述符协议,它会帮助我们正确定义 getters 和 setters。让我们使用 @property 装饰器将 getter 添加到 User 的所有三个字段中。
```python
@property
def name(self) -> Name:
return self._name
@property
def phone(self) -> PhoneNumber:
return self._phone
@property
def since(self) -> datetime.datetime:
return self._since
```
电话字段的 setter 可以使用 @<字段>.setter 来装饰:
```python
@phone.setter
def phone(self, phone: PhoneNumber) -> None:
if phone is None:
raise ValueError("Invalid phone")
self._phone = phone
```
通过重写 \_\_str\_\_() 函数,也可以为 User 提供一个简单的打印方法:
```python
def __str__(self):
return self.name.value + " [" + str(self.phone.value) + "] since " + str(self.since)
```
这样,域模型的实体和值对象就准备好了。创建异常类如下所示:
```python
class UserNotFoundException(Exception):
pass
```
域模型现在只剩下 UserRepository 了。Python 提供了一个名为 abc 的有用模块来创建抽象方法和抽象类。因为 UserRepository 只是一个接口,所以我们可以使用 abc 模块。
任何继承自 abc.ABC 的类都将变为抽象类,任何带有 @abc.abstractmethod 装饰器的函数都会变为一个抽象函数。下面是 UserRepository 的结构:
```python
from abc import ABC, abstractmethod
class UserRepository(ABC):
@abstractmethod
def fetch(self, name:Name) -> User:
pass
```
UserRepository 遵循仓储模式。换句话说,它在 User 实体上提供适当的 CRUD 操作,而不会暴露底层数据存储语义。在本例中,我们只需要 fetch() 操作,因为查找服务只查找用户。
因为 UserRepository 是一个抽象类,我们不能从抽象类创建实例对象。创建对象必须依赖于一个具体类实现这个抽象类。数据层 UserRepositoryImpl 提供了 UserRepository 的具体实现:
```
class UserRepositoryImpl(UserRepository):
def fetch(self, name:Name) -> User:
pass
```
由于添加服务将用户数据存储在一个 MySQL 数据库中,因此 UserRepositoryImpl 也必须连接到相同的数据库去检索数据。下面是连接到数据库的代码。主要,我们正在使用 MySQL 的连接库。
```python
from mysql.connector import connect, Error
class UserRepositoryImpl(UserRepository):
def fetch(self, name:Name) -> User:
try:
with connect(
host="mysqldb",
user="root",
password="admin",
database="glarimy",
) as connection:
with connection.cursor() as cursor:
cursor.execute("SELECT * FROM ums_users where name=%s", (name.value,))
row = cursor.fetchone()
if cursor.rowcount == -1:
raise UserNotFoundException()
else:
return User(Name(row[0]), PhoneNumber(row[1]), row[2])
except Error as e:
raise e
```
在上面的片段中,我们使用 root 用户admin 密码连接到一个名为 mysqldb 的数据库服务器,使用名为 glarimy 的数据库(模式)。在演示代码中是可以包含这些信息的,但在生产中不建议这么做,因为这会暴露敏感信息。
fetch() 操作的逻辑非常直观,它对 ums_users 表执行 SELECT 查询。回想一下,添加服务正在将用户数据写入同一个表中。如果 SELECT 查询没有返回记录fetch() 函数将抛出 UserNotFoundException 异常。否则,它会从记录中构造 User 实体并将其返回给调用者。这没有什么特殊的。
### 应用层
最终,我们需要创建应用层。此模型如图 2 所示。它只包含两个类:控制器和一个 DTO。
![图 2: 添加服务的应用层][2]
众所周知,一个 DTO 只是一个没有任何业务逻辑的数据容器。它主要用于在查找服务和外部服务之间传输数据。我们只是提供了在 REST 层中将 UserRecord 转换为字典以便用于 JSON 传输:
```python
class UserRecord:
def toJSON(self):
return {
"name": self.name,
"phone": self.phone,
"since": self.since
}
```
控制器的工作是将 DTO 转换为用于域服务的域对象,反之亦然。可以从 find() 操作中观察到这一点。
```python
class UserController:
def __init__(self):
self._repo = UserRepositoryImpl()
def find(self, name: str):
try:
user: User = self._repo.fetch(Name(name))
record: UserRecord = UserRecord()
record.name = user.name.value
record.phone = user.phone.value
record.since = user.since
return record
except UserNotFoundException as e:
return None
```
find() 操作接收一个字符串作为用户名,然后将其转换为 Name 对象,并调用 UserRepository 获取相应的 User 对象。如果找到了,则使用检索到的 User 对象创建 UserRecord。回想一下将域对象转换为 DTO 是很有必要的,这样可以对外部服务隐藏域模型。
UserController 不需要有多个实例,它也可以是单例的。通过重写 \_\_new\_\_可以将其建模为一个单例。
```python
class UserController:
def __new__(self):
if not hasattr(self, instance):
self.instance = super().__new__(self)
return self.instance
def __init__(self):
self._repo = UserRepositoryImpl()
def find(self, name: str):
try:
user: User = self._repo.fetch(Name(name))
record: UserRecord = UserRecord()
record.name = user.name.getValue()
record.phone = user.phone.getValue()
record.since = user.since
return record
except UserNotFoundException as e:
return None
```
我们已经完全实现了查找服务的模型,剩下的唯一任务是将其作为 REST 服务公开。
### REST API
查找服务只提供一个 API那就是通过用户名查找用户。显然 URI 如下所示:
```
GET /user/{name}
```
此 API 希望根据提供的用户名查找用户,并以 JSON 格式返回用户的电话号码等详细信息。如果没有找到用户API 将返回一个 404 状态码。
我们可以使用 Flask 框架来构建 REST API它最初的目的是使用 Python 开发 Web 应用程序。除了 HTML 视图,它还进一步扩展到支持 REST 视图。我们选择这个框架是因为它足够简单。
创建一个 Flask 应用程序:
```python
from flask import Flask
app = Flask(__name__)
```
然后为 Flask 应用程序定义路由,就像函数一样简单:
```python
@app.route('/user/<name>')
def get(name):
pass
```
注意 @app.route 映射到 API /user/<name>,与之对应的函数的 get()。
如你所见,每次用户访问 API 如 http://server:port/user/Krishna 时,都将调用这个 get() 函数。Flask 足够智能,可以从 URL 中提取 'Krishna' 作为用户名,并将其传递给 get() 函数。
get() 函数很简单。它要求控制器找到该用户,并将其与通常的 HTTP 头一起打包为 JSON 格式后返回。如果控制器返回 None则 get() 函数返回合适的 HTTP 状态码。
```python
from flask import jsonify, abort
controller = UserController()
record = controller.find(name)
if record is None:
abort(404)
else:
resp = jsonify(record.toJSON())
resp.status_code = 200
return resp
```
最后,我们需要 Flask 应用程序提供服务,可以使用 waitress 服务:
```python
from waitress import serve
serve(app, host="0.0.0.0", port=8080)
```
在上面的片段中,应用程序在本地主机的 8080 端口上提供服务。
最终代码如下所示:
```python
from flask import Flask, jsonify, abort
from waitress import serve
app = Flask(__name__)
@app.route('/user/<name>')
def get(name):
controller = UserController()
record = controller.find(name)
if record is None:
abort(404)
else:
resp = jsonify(record.toJSON())
resp.status_code = 200
return resp
serve(app, host="0.0.0.0", port=8080)
```
### 部署
查询服务的代码已经准备完毕。除了 REST API 之外,它还有域模型、数据层和应用程序层。下一步是构建此服务,将其容器化,然后部署到 Kubernetes 上。此过程与部署其他服务妹有任何区别,但有一些 Python 特有的步骤。
在继续前进之前,让我们来看下文件夹和文件结构:
```bash
+ ums-find-service
+ ums
- domain.py
- data.py
- app.py
- Dockerfile
- requirements.txt
- kube-find-deployment.yml
```
如你所见,整个工作文件夹都位于 ums-find-service 下,它包含了 ums 文件夹中的代码和一些配置文件,例如 Dockerfile、requirements.txt 和 kube-find-deployment.yml。
domain.py 包含域模型data.py 包含 UserRepositoryImplapp.py 包含剩余代码。我们已经阅读过代码了,现在我们来看看配置文件。
第一个是 requirements.txt它声明了 Python 系统需要下载和安装的外部依赖项。我们需要用查找服务中用到的每个外部 Python 模块来填充它。如你所见,我们使用了 MySQL 连接器、Flask 和 Waitress 模块。因此,下面是 requirements.txt 的内容。
```
Flask==2.1.1
Flask_RESTful
mysql-connector-python
waitress
```
第二步是在 Dockerfile 中声明一些必要显示to 校正:这里不太理解该如何翻译),如下:
```
FROM python:3.8-slim-buster
WORKDIR /ums
ADD ums /ums
ADD requirements.txt requirements.txt
RUN pip3 install -r requirements.txt
EXPOSE 8080
ENTRYPOINT ["python"]
CMD ["/ums/app.py"]
```
总的来说,我们使用 Python 3.8 作为基线,除了移动 requirements.txt 之外,我们还将代码从 ums 文件夹移动到 Docker 容器中对应的文件夹中。然后,我们指示容器运行 pip3 install 命令安装对应模块。最后,我们向外暴露 8080 端口(因为 waitress 运行在此端口上)。
为了运行此服务,我们指示容器使用使用以下命令:
```
python /ums/app.py
```
一旦 Dockerfile 准备完成,在 ums-find-service 文件夹中运行以下命令,创建 Docker 镜像:
```
docker build -t glarimy/ums-find-service
```
它会创建 Docker 镜像,可以使用以下命令查找镜像:
```
docker images
```
尝试将镜像推送到 Docker Hub你也可以登录到 Docker。
```
docker login
docker push glarimy/ums-find-service
```
最后一步是为 Kubernetes 部署构建清单。
在之前的文章中,我们已经介绍了如何建立 Kubernetes 集群、部署和使用服务的方法。我假设仍然使用之前文章中的 manifest 文件来部署添加服务、MySQL、Kafka 和 Zookeeper。我们只需要将以下内容添加到 kube-find-deployment.yml 文件中:
```
apiVersion: apps/v1
kind: Deployment
metadata:
name: ums-find-service
labels:
app: ums-find-service
spec:
replicas: 3
selector:
matchLabels:
app: ums-find-service
template:
metadata:
labels:
app: ums-find-service
spec:
containers:
- name: ums-find-service
image: glarimy/ums-find-service
ports:
- containerPort: 8080
---
apiVersion: v1
kind: Service
metadata:
name: ums-find-service
labels:
name: ums-find-service
spec:
type: LoadBalancer
ports:
- port: 8080
selector:
app: ums-find-service
```
上面 manifest 的第一部分声明了 glarimy/ums-find-service 镜像的查找服务,它包含三个副本。它还暴露 8080 端口。manifet 的后半部分声明了一个Kubernetes 服务作为查找服务部署的前端。请记住在之前文章中mysqldb 服务已经是上述清单的一部分了。
运行以下命令在 Kubernetes 集群上部署 manifest
```
kubectl create -f kube-find-deployment.yml
```
部署完成后,可以使用以下命令验证容器组和服务:
```
kubectl get services
```
输出如图 3 所示:
![图 3: Kubernetes 服务][3]
它会列出集群上运行的所有服务。注意查找服务的外部 ip使用 curl 调用此服务:
```
curl http://10.98.45.187:8080/user/KrishnaMohan
```
注意10.98.45.187 对应查找服务,如图 3 所示。
如果我们使用添加服务创建一个名为 KrishnaMohan 的用户,那么上面的 curl 命令看起来如图 4 所示:
![图 4: 查找服务][4]
用户管理系统UMS的体系结构包含添加服务和查找服务以及存储和消息传递所需的后端服务如图 5 所示。可以看到终端用户使用 ums 添加服务的 IP 地址添加新用户,使用 ums 查找服务的 IP 地址查找已有用户。每个 Kubernetes 服务都由三个对应容器的节点支持。还要注意:同样的 mysqldb 服务用于存储和检索用户数据。
![图 5: UMS 的添加服务和查找服务][5]
### 其他服务
UMS 系统还包含两个服务:查找服务和日志服务。在本系列的下一部分中,我们将在 Node 平台上设计这些服务,并将它们部署到同一个 Kubernetes 集群,以演示多语言微服务架构的真正魅力。最后,我们将观察一些与微服务相关的设计模式。
--------------------------------------------------------------------------------
via: https://www.opensourceforu.com/2022/09/python-microservices-using-flask-on-kubernetes/
作者:[Krishna Mohan Koyya][a]
选题:[lkxed][b]
译者:[MjSeven](https://github.com/MjSeven)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.opensourceforu.com/author/krishna-mohan-koyya/
[b]: https://github.com/lkxed
[1]: https://www.opensourceforu.com/wp-content/uploads/2022/08/Figure-1-The-domain-model-of-FindService-1.png
[2]: https://www.opensourceforu.com/wp-content/uploads/2022/08/Figure-2-The-application-layer-of-FindService.png
[3]: https://www.opensourceforu.com/wp-content/uploads/2022/08/Figure-3-Kubernetes-services-1.png
[4]: https://www.opensourceforu.com/wp-content/uploads/2022/08/Figure-4-FindService.png
[5]: https://www.opensourceforu.com/wp-content/uploads/2022/08/Figure-5-UMS-with-AddService-and-FindService.png
[6]: https://www.opensourceforu.com/wp-content/uploads/2022/08/Python-Microservices-1-696x477.jpg