translated by Flowsnow

This commit is contained in:
suncle 2018-11-06 23:57:17 +08:00
parent 54bd9b172c
commit 24ba9bf537
2 changed files with 206 additions and 258 deletions

View File

@ -1,258 +0,0 @@
translating by Flowsnow
Build a bikesharing app with Redis and Python
======
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/google-bikes-yearbook.png?itok=BnmInwea)
I travel a lot on business. I'm not much of a car guy, so when I have some free time, I prefer to walk or bike around a city. Many of the cities I've visited on business have bikeshare systems, which let you rent a bike for a few hours. Most of these systems have an app to help users locate and rent their bikes, but it would be more helpful for users like me to have a single place to get information on all the bikes in a city that are available to rent.
To solve this problem and demonstrate the power of open source to add location-aware features to a web application, I combined publicly available bikeshare data, the [Python][1] programming language, and the open source [Redis][2] in-memory data structure server to index and query geospatial data.
The resulting bikeshare application incorporates data from many different sharing systems, including the [Citi Bike][3] bikeshare in New York City. It takes advantage of the General Bikeshare Feed provided by the Citi Bike system and uses its data to demonstrate some of the features that can be built using Redis to index geospatial data. The Citi Bike data is provided under the [Citi Bike data license agreement][4].
### General Bikeshare Feed Specification
The General Bikeshare Feed Specification (GBFS) is an [open data specification][5] developed by the [North American Bikeshare Association][6] to make it easier for map and transportation applications to add bikeshare systems into their platforms. The specification is currently in use by over 60 different sharing systems in the world.
The feed consists of several simple [JSON][7] data files containing information about the state of the system. The feed starts with a top-level JSON file referencing the URLs of the sub-feed data:
```
{
    "data": {
        "en": {
            "feeds": [
                {
                    "name": "system_information",
                    "url": "https://gbfs.citibikenyc.com/gbfs/en/system_information.json"
                },
                {
                    "name": "station_information",
                    "url": "https://gbfs.citibikenyc.com/gbfs/en/station_information.json"
                },
                . . .
            ]
        }
    },
    "last_updated": 1506370010,
    "ttl": 10
}
```
The first step is loading information about the bikesharing stations into Redis using data from the `system_information` and `station_information` feeds.
The `system_information` feed provides the system ID, which is a short code that can be used to create namespaces for Redis keys. The GBFS spec doesn't specify the format of the system ID, but does guarantee it is globally unique. Many of the bikeshare feeds use short names like coast_bike_share, boise_greenbike, or topeka_metro_bikes for system IDs. Others use familiar geographic abbreviations such as NYC or BA, and one uses a universally unique identifier (UUID). The bikesharing application uses the identifier as a prefix to construct unique keys for the given system.
The `station_information` feed provides static information about the sharing stations that comprise the system. Stations are represented by JSON objects with several fields. There are several mandatory fields in the station object that provide the ID, name, and location of the physical bike stations. There are also several optional fields that provide helpful information such as the nearest cross street or accepted payment methods. This is the primary source of information for this part of the bikesharing application.
### Building the database
I've written a sample application, [load_station_data.py][8], that mimics what would happen in a backend process for loading data from external sources.
### Finding the bikeshare stations
Loading the bikeshare data starts with the [systems.csv][9] file from the [GBFS repository on GitHub][5].
The repository's [systems.csv][9] file provides the discovery URL for registered bikeshare systems with an available GBFS feed. The discovery URL is the starting point for processing bikeshare information.
The `load_station_data` application takes each discovery URL found in the systems file and uses it to find the URL for two sub-feeds: system information and station information. The system information feed provides a key piece of information: the unique ID of the system. (Note: the system ID is also provided in the systems.csv file, but some of the identifiers in that file do not match the identifiers in the feeds, so I always fetch the identifier from the feed.) Details on the system, like bikeshare URLs, phone numbers, and emails, could be added in future versions of the application, so the data is stored in a Redis hash using the key `${system_id}:system_info`.
### Loading the station data
The station information provides data about every station in the system, including the system's location. The `load_station_data` application iterates over every station in the station feed and stores the data about each into a Redis hash using a key of the form `${system_id}:station:${station_id}`. The location of each station is added to a geospatial index for the bikeshare using the `GEOADD` command.
### Updating data
On subsequent runs, I don't want the code to remove all the feed data from Redis and reload it into an empty Redis database, so I carefully considered how to handle in-place updates of the data.
The code starts by loading the dataset with information on all the bikesharing stations for the system being processed into memory. When information is loaded for a station, the station (by key) is removed from the in-memory set of stations. Once all station data is loaded, we're left with a set containing all the station data that must be removed for that system.
The application iterates over this set of stations and creates a transaction to delete the station information, remove the station key from the geospatial indexes, and remove the station from the list of stations for the system.
### Notes on the code
There are a few interesting things to note in [the sample code][8]. First, items are added to the geospatial indexes using the `GEOADD` command but removed with the `ZREM` command. As the underlying implementation of the geospatial type uses sorted sets, items are removed using `ZREM`. A word of caution: For simplicity, the sample code demonstrates working with a single Redis node; the transaction blocks would need to be restructured to run in a cluster environment.
If you are using Redis 4.0 (or later), you have some alternatives to the `DELETE` and `HMSET` commands in the code. Redis 4.0 provides the [`UNLINK`][10] command as an asynchronous alternative to the `DELETE` command. `UNLINK` will remove the key from the keyspace, but it reclaims the memory in a separate thread. The [`HMSET`][11] command is [deprecated in Redis 4.0 and the `HSET` command is now variadic][12] (that is, it accepts an indefinite number of arguments).
### Notifying clients
At the end of the process, a notification is sent to the clients relying on our data. Using the Redis pub/sub mechanism, the notification goes out over the `geobike:station_changed` channel with the ID of the system.
### Data model
When structuring data in Redis, the most important thing to think about is how you will query the information. The two main queries the bikeshare application needs to support are:
* Find stations near us
* Display information about stations
Redis provides two main data types that will be useful for storing our data: hashes and sorted sets. The [hash type][13] maps well to the JSON objects that represent stations; since Redis hashes don't enforce a schema, they can be used to store the variable station information.
Of course, finding stations geographically requires a geospatial index to search for stations relative to some coordinates. Redis provides [several commands][14] to build up a geospatial index using the [sorted set][15] data structure.
We construct keys using the format `${system_id}:station:${station_id}` for the hashes containing information about the stations and keys using the format `${system_id}:stations:location` for the geospatial index used to find stations.
### Getting the user's location
The next step in building out the application is to determine the user's current location. Most applications accomplish this through built-in services provided by the operating system. The OS can provide applications with a location based on GPS hardware built into the device or approximated from the device's available WiFi networks.
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/rediscli_map.png?itok=icqk5543)
### Finding stations
After the user's location is found, the next step is locating nearby bikesharing stations. Redis' geospatial functions can return information on stations within a given distance of the user's current coordinates. Here's an example of this using the Redis command-line interface.
Imagine I'm at the Apple Store on Fifth Avenue in New York City, and I want to head downtown to Mood on West 37th to catch up with my buddy [Swatch][16]. I could take a taxi or the subway, but I'd rather bike. Are there any nearby sharing stations where I could get a bike for my trip?
The Apple store is located at 40.76384, -73.97297. According to the map, two bikeshare stations—Grand Army Plaza & Central Park South and East 58th St. & Madison—fall within a 500-foot radius (in blue on the map above) of the store.
I can use Redis' `GEORADIUS` command to query the NYC system index for stations within a 500-foot radius:
```
127.0.0.1:6379> GEORADIUS NYC:stations:location -73.97297 40.76384 500 ft
1) "NYC:station:3457"
2) "NYC:station:281"
```
Redis returns the two bikeshare locations found within that radius, using the elements in our geospatial index as the keys for the metadata about a particular station. The next step is looking up the names for the two stations:
```
127.0.0.1:6379> hget NYC:station:281 name
"Grand Army Plaza & Central Park S"
 
127.0.0.1:6379> hget NYC:station:3457 name
"E 58 St & Madison Ave"
```
Those keys correspond to the stations identified on the map above. If I want, I can add more flags to the `GEORADIUS` command to get a list of elements, their coordinates, and their distance from our current point:
```
127.0.0.1:6379> GEORADIUS NYC:stations:location -73.97297 40.76384 500 ft WITHDIST WITHCOORD ASC
1) 1) "NYC:station:281"
   2) "289.1995"
   3) 1) "-73.97371262311935425"
      2) "40.76439830559216659"
2) 1) "NYC:station:3457"
   2) "383.1782"
   3) 1) "-73.97209256887435913"
      2) "40.76302702144496237"
```
Looking up the names associated with those keys generates an ordered list of stations I can choose from. Redis doesn't provide directions or routing capability, so I use the routing features of my device's OS to plot a course from my current location to the selected bike station.
The `GEORADIUS` function can be easily implemented inside an API in your favorite development framework to add location functionality to an app.
### Other query commands
In addition to the `GEORADIUS` command, Redis provides three other commands for querying data from the index: `GEOPOS`, `GEODIST`, and `GEORADIUSBYMEMBER`.
The `GEOPOS` command can provide the coordinates for a given element from the geohash. For example, if I know there is a bikesharing station at West 38th and 8th and its ID is 523, then the element name for that station is NYC🚉523. Using Redis, I can find the station's longitude and latitude:
```
127.0.0.1:6379> geopos NYC:stations:location NYC:station:523
1) 1) "-73.99138301610946655"
   2) "40.75466497634030105"
```
The `GEODIST` command provides the distance between two elements of the index. If I wanted to find the distance between the station at Grand Army Plaza & Central Park South and the station at East 58th St. & Madison, I would issue the following command:
```
127.0.0.1:6379> GEODIST NYC:stations:location NYC:station:281 NYC:station:3457 ft
"671.4900"
```
Finally, the `GEORADIUSBYMEMBER` command is similar to the `GEORADIUS` command, but instead of taking a set of coordinates, the command takes the name of another member of the index and returns all the members within a given radius centered on that member. To find all the stations within 1,000 feet of the Grand Army Plaza & Central Park South, enter the following:
```
127.0.0.1:6379> GEORADIUSBYMEMBER NYC:stations:location NYC:station:281 1000 ft WITHDIST
1) 1) "NYC:station:281"
   2) "0.0000"
2) 1) "NYC:station:3132"
   2) "793.4223"
3) 1) "NYC:station:2006"
   2) "911.9752"
4) 1) "NYC:station:3136"
   2) "940.3399"
5) 1) "NYC:station:3457"
   2) "671.4900"
```
While this example focused on using Python and Redis to parse data and build an index of bikesharing system locations, it can easily be generalized to locate restaurants, public transit, or any other type of place developers want to help users find.
This article is based on [my presentation][17] at Open Source 101 in Raleigh this year.
--------------------------------------------------------------------------------
via: https://opensource.com/article/18/2/building-bikesharing-application-open-source-tools
作者:[Tague Griffith][a]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://opensource.com/users/tague
[1]:https://www.python.org/
[2]:https://redis.io/
[3]:https://www.citibikenyc.com/
[4]:https://www.citibikenyc.com/data-sharing-policy
[5]:https://github.com/NABSA/gbfs
[6]:http://nabsa.net/
[7]:https://www.json.org/
[8]:https://gist.github.com/tague/5a82d96bcb09ce2a79943ad4c87f6e15
[9]:https://github.com/NABSA/gbfs/blob/master/systems.csv
[10]:https://redis.io/commands/unlink
[11]:https://redis.io/commands/hmset
[12]:https://raw.githubusercontent.com/antirez/redis/4.0/00-RELEASENOTES
[13]:https://redis.io/topics/data-types#Hashes
[14]:https://redis.io/commands#geo
[15]:https://redis.io/topics/data-types-intro#redis-sorted-sets
[16]:https://twitter.com/swatchthedog
[17]:http://opensource101.com/raleigh/talks/building-location-aware-apps-open-source-tools/

View File

@ -0,0 +1,206 @@
使用Redis和Python构建一个共享单车的应用程序
======
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/google-bikes-yearbook.png?itok=BnmInwea)
我经常出差。但不是一个汽车狂热分子,所以当我有空闲时,我更喜欢在城市中散步或者骑单车。我参观过的许多城市都有共享单车系统,你可以租个单车用几个小时。大多数系统都有一个应用程序来帮助用户定位和租用他们的单车,但对于像我这样的用户来说,在一个地方可以获得可租赁的城市中所有单车的信息会更有帮助。
为了解决这个问题并且展示开源的强大还有为 Web 应用程序添加位置感知的功能,我组合了可用的公开的共享单车数据,[Python][1] 编程语言以及开源的 [Redis][2] 内存数据结构服务,用来索引和查询地理空间数据。
由此诞生的共享单车应用程序包含来自很多不同的共享系统的数据,包括纽约市的 [Citi Bike][3] 共享单车系统LCTT 译注Citi Bike 是纽约市的一个私营公共单车系统。在2013年5月27日正式营运是美国最大的公共单车系统。Citi Bike 的名称有两层意思。Citi 是计划赞助商花旗银行CitiBank的名字。同时Citi 和英文中“城市city”一词的读音相同。它利用了花旗单车系统提供的 <ruby>通用共享单车数据流<rt>General Bikeshare Feed</rt></ruby>,并利用其数据演示了一些使用 Redis 地理空间数据索引的功能。 花旗单车数据可以在 [花旗单车数据许可协议][4] 下提供。
### 通用共享单车数据流规范
通用共享单车数据流规范GBFS是由 [北美共享单车协会][6] 开发的 [开放数据规范][5],旨在使地图程序和运输程序更容易的将共享单车系统添加到对应平台中。 目前世界上有 60 多个不同的共享系统使用该规范。
Feed 流由几个简单的 [JSON][7] 数据文件组成,其中包含系统状态的信息。 Feed 流以引用了子 Feed 流数据的URL 的顶级 JSON 文件开头:
```
{
"data": {
"en": {
"feeds": [
{
"name": "system_information",
"url": "https://gbfs.citibikenyc.com/gbfs/en/system_information.json"
},
{
"name": "station_information",
"url": "https://gbfs.citibikenyc.com/gbfs/en/station_information.json"
},
. . .
]
}
},
"last_updated": 1506370010,
"ttl": 10
}
```
第一步是使用 `system_information``station_information` 的数据将共享单车站的信息加载到Redis中。
`system_information` 提供系统 ID系统 ID 可用于为 Redis 密钥创建命名空间的简短编码。 GBFS 规范没有指定系统 ID 的格式但需要确保它是全局唯一的。许多共享单车数据流使用诸如coast_bike_shareboise_greenbike 或者 topeka_metro_bikes 这样的短名称作为系统 ID。其他的使用常见的地理缩写例如 NYC 或者 BA并且使用通用唯一标识符UUID。 共享单车应用程序使用标识符作为前缀来为指定系统构造唯一键。
`station_information feed` 提供组成整个系统的共享单车站的静态信息。车站由具有多个字段的 JSON 对象表示。车站对象中有几个必填字段,用于提供物理单车站的 ID名称和位置。还有几个可选字段提供有用的信息例如最近的十字路口可接受的付款方式。这是共享单车应用程序这一部分的主要信息来源。
### 建立数据库
我编写了一个示例应用程序 [load_station_data.py][8],它模仿后端进程中从外部源加载数据时会发生什么。
### 查找共享单车站
从 [GitHub 上 GBFS 仓库][5]中的 [systems.csv][9] 文件开始加载共享单车数据。
仓库中的 [systems.csv][9] 文件为已注册的共享单车系统提供可用的 GBFS 源发现的 URL。 发现的URL是处理共享单车信息的起点。
`load_station_data` 程序获取系统文件中找到的每个 URL并使用它来查找两个子数据流的URL系统信息和车站信息。 系统信息提供提供了一条关键信息:系统的唯一 ID。 (注意:系统 ID 也在 systems.csv 文件中提供,但文件中的某些标识符与数据流中的标识符不匹配,因此我总是从数据流中获取标识符。)系统上的详细信息,比如共享单车 URLS电话号码和电子邮件 可以在程序的后续版本中添加,因此使用 `${system_id}:system_info` 这个键将数据存储在 Redis 中。
### 载入车站数据
车站信息提供系统中每个车站的数据,包括系统的位置。 load_station_data 程序遍历车站数据流中的每个车站,并使用 `${system_id}:station:${station_id}` 形式的键将每个车站的数据存储到 Redis 中。 使用 `GEOADD` 命令将每个车站的位置添加到共享单车的地理空间索引中。
### 更新数据
在后续运行中,我不希望代码从 Redis 中删除所有 Feed 数据并将其重新加载到空的 Redis 数据库中,因此我仔细考虑了如何处理数据的原地更新。
代码首先将所有共享单车站的信息数据集加载到正在处理到内存中的系统中的。 为单个车站加载信息时,将从内存中的车站集合按照存储在 Redis 的键中删除该站。 加载完所有车站数据后,我们将留下一个包含该系统必须删除的所有车站数据的集合。
程序创建一个事务删除这组车站的信息,从地理空间索引中删除车站的键,并从系统的车站列表中删除车站。
### 代码注意点
需要注意在[示例代码][8]中有一些有趣的事情。 首先,使用 `GEOADD` 命令将所有数据项添加到地理空间索引中,使用 `ZREM` 命令将其删除。 由于地理空间类型的底层实现使用了有序集合因此需要使用ZREM删除数据项。 需要注意的是:为简单起见,示例代码演示了如何使用单个 Redis 节点; 为了在集群环境中运行,需要重新构建事务块。
如果你使用的是 Redis 4.0(或更高版本),则可以在代码中使用 `DELETE``HMSET` 命令。 Redis 4.0 提供 `UNLINK` 命令作为 `DELETE` 命令的异步版本的替代。 `UNLINK` 命令将从键空间中删除键,但它会在单独的线程中回收内存。 在 Redis 4.0 中 [`HMSET` 命令已经被弃用了而且`HSET` 命令现在接收可变参数][12](即,它接受的参数个数不定)。
### 通知客户端
处理结束时,会向依赖我们数据的客户发送通知。 使用 Redis 发布/订阅机制,通知将通过 `geobike:station_changed` 通道和系统 ID 一起发出。
### 数据模型
在 Redis 中构建数据时,最重要的考虑因素是如何查询信息。 共享单车程序需要支持的两个主要查询是:
- 找到我们附近的车站
- 显示车站相关的信息
Redis 提供了两种主要数据类型用于存储数据:哈希和有序集。 哈希类型很好地映射到表示车站的 JSON 对象; 由于 Redis 哈希不使用固定结构,因此它们可用于存储可变的车站信息。
当然,在地理位置上寻找站点需要地理空间索引来搜索相对于某些坐标的站点。 Redis 提供了几个使用有序集数据结构构建地理空间索引的命令。
我们使用 `${system_id}:station:${station_id}` 这种格式的键存储车站相关的信息,使用格 `${system_id}:stations:location` 这种格式的键查找车站的地理空间索引。
### 获取用户位置
构建应用程序的下一步是确定用户的当前位置。 大多数应用程序通过操作系统提供的内置服务来实现此目的。 操作系统可以基于设备内置的 GPS 硬件为应用程序提供定位,或者从设备的可用 WiFi 网络提供近似的定位。
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/rediscli_map.png?itok=icqk5543)
### 查找车站
找到用户的位置后,下一步是找到附近的共享单车站。 Redis 的地理空间功能可以返回用户当前坐标在给定距离内的所有车站信息。 以下是使用 Redis 命令行界面的示例。
想象一下,我正在纽约市第五大道的苹果零售店,我想要向市中心方向前往位于西 37 街的 MOOD 布料店,与我的好友 [Swatch][16] 相遇。 我可以坐出租车或地铁,但我更喜欢骑单车。 附近有没有我可以使用的单车共享站呢?
苹果零售店位于 40.76384-73.97297。 根据地图显示,在零售店 500 英尺半径范围内(地图上方的蓝色)有两个单车站,分别是陆军广场中央公园南单车站和东 58 街麦迪逊单车站。
我可以使用 Redis 的 `GEORADIUS` 命令查询 500 英尺半径范围内的车站的 NYC 系统索引:
```
127.0.0.1:6379> GEORADIUS NYC:stations:location -73.97297 40.76384 500 ft
1) "NYC:station:3457"
2) "NYC:station:281"
```
Redis 使用地理空间索引中的元素作为特定车站的元数据的键,返回在该半径内找到的两个共享单车站。 下一步是查找两个站的名称:
```
127.0.0.1:6379> hget NYC:station:281 name
"Grand Army Plaza & Central Park S"
127.0.0.1:6379> hget NYC:station:3457 name
"E 58 St & Madison Ave"
```
这些键对应于上面地图上标识的车站。 如果需要,可以在 `GEORADIUS` 命令中添加更多标志来获取元素列表,每个元素的坐标以及它们与当前点的距离:
```
127.0.0.1:6379> GEORADIUS NYC:stations:location -73.97297 40.76384 500 ft WITHDIST WITHCOORD ASC
1) 1) "NYC:station:281"
2) "289.1995"
3) 1) "-73.97371262311935425"
2) "40.76439830559216659"
2) 1) "NYC:station:3457"
2) "383.1782"
3) 1) "-73.97209256887435913"
2) "40.76302702144496237"
```
查找与这些键关联的名称会生成一个我可以从中选择的车站的有序列表。 Redis 不提供路线的功能,因此我使用设备操作系统的路线功能绘制从当前位置到所选单车站的路线。
`GEORADIUS` 函数可以很轻松的在你喜欢的开发框架的 API 里实现,就可以向应用程序添加位置功能了。
### 其他的查询命令
除了 `GEORADIUS` 命令外Redis 还提供了另外三个用于查询索引数据的命令:`GEOPOS``GEODIST` 和 `GEORADIUSBYMEMBER`
`GEOPOS` 命令可以为 <ruby>地理哈希<rt>geohash</rt></ruby> 中的给定元素提供坐标LCTT译注geohash 是一种将二维的经纬度编码为一位的字符串的一种算法,常用于基于距离的查找算法和推荐算法)。 例如,如果我知道西 38 街 8 号有一个共享单车站ID 是 523那么该站的元素名称是`NYC:station:523`。 使用 Redis我可以找到该站的经度和纬度
```
127.0.0.1:6379> geopos NYC:stations:location NYC:station:523
1) 1) "-73.99138301610946655"
2) "40.75466497634030105"
```
`GEODIST` 命令提供两个索引元素之间的距离。 如果我想找到陆军广场中央公园南单车站与东 58 街麦迪逊单车站之间的距离,我会使用以下命令:
```
127.0.0.1:6379> GEODIST NYC:stations:location NYC:station:281 NYC:station:3457 ft
"671.4900"
```
最后,`GEORADIUSBYMEMBER` 命令与 `GEORADIUS` 命令类似,但该命令不是采用一组坐标,而是采用索引的另一个成员的名称,并返回以该成员为中心的给定半径内的所有成员。 要查找陆军广场中央公园南单车站 1000 英尺范围内的所有车站,请输入以下内容:
```
127.0.0.1:6379> GEORADIUSBYMEMBER NYC:stations:location NYC:station:281 1000 ft WITHDIST
1) 1) "NYC:station:281"
2) "0.0000"
2) 1) "NYC:station:3132"
2) "793.4223"
3) 1) "NYC:station:2006"
2) "911.9752"
4) 1) "NYC:station:3136"
2) "940.3399"
5) 1) "NYC:station:3457"
2) "671.4900"
```
虽然此示例侧重于使用 Python 和 Redis 来解析数据并构建共享单车系统位置的索引,但可以很容易地衍生为定位餐馆,公共交通或者是开发人员希望帮助用户找到的任何其他类型的场所。
本文基于今年我在北卡罗来纳州罗利市的开源 101 会议上的[演讲][17]。
--------------------------------------------------------------------------------
via: https://opensource.com/article/18/2/building-bikesharing-application-open-source-tools
作者:[Tague Griffith][a]
译者:[Flowsnow](https://github.com/Flowsnow)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/tague
[1]: https://www.python.org/
[2]: https://redis.io/
[3]: https://www.citibikenyc.com/
[4]: https://www.citibikenyc.com/data-sharing-policy
[5]: https://github.com/NABSA/gbfs
[6]: http://nabsa.net/
[7]: https://www.json.org/
[8]: https://gist.github.com/tague/5a82d96bcb09ce2a79943ad4c87f6e15
[9]: https://github.com/NABSA/gbfs/blob/master/systems.csv
[10]: https://redis.io/commands/unlink
[11]: https://redis.io/commands/hmset
[12]: https://raw.githubusercontent.com/antirez/redis/4.0/00-RELEASENOTES
[13]: https://redis.io/topics/data-types#Hashes
[14]: https://redis.io/commands#geo
[15]: https://redis.io/topics/data-types-intro#redis-sorted-sets
[16]: https://twitter.com/swatchthedog
[17]: http://opensource101.com/raleigh/talks/building-location-aware-apps-open-source-tools/