diff --git a/translated/tech/20191018 How to use Protobuf for data interchange.md b/translated/tech/20191018 How to use Protobuf for data interchange.md index 959b9ec6b6..0ad4896ec2 100644 --- a/translated/tech/20191018 How to use Protobuf for data interchange.md +++ b/translated/tech/20191018 How to use Protobuf for data interchange.md @@ -1,6 +1,6 @@ [#]: collector: (lujun9972) [#]: translator: (wxy) -[#]: reviewer: ( ) +[#]: reviewer: (wxy) [#]: publisher: ( ) [#]: url: ( ) [#]: subject: (How to use Protobuf for data interchange) @@ -12,18 +12,15 @@ > 在以不同语言编写并在不同平台上运行的应用程序之间交换数据时,Protobuf 编码可提高效率。 -![metrics and data shown on a computer screen][1] +![](https://img.linux.net.cn/data/attachment/album/201911/22/075757pn2fxfth30ntwefg.jpg) -协议缓冲区Protocol Buffers -([Protobufs][2])像 XML 和 JSON 一样,可以让用不同语言编写并在不同平台上运行的应用程序交换数据。例如,用 Go 编写的发送应用程序可以在 Protobuf 中对 Go 特定的销售订单进行编码,然后用 Java 编写的接收方可以对它进行解码,以获取所接收订单的 Java 特定表示方式。这是在网络连接上的体系结构示意图: +协议缓冲区Protocol Buffers([Protobufs][2])像 XML 和 JSON 一样,可以让用不同语言编写并在不同平台上运行的应用程序交换数据。例如,用 Go 编写的发送程序可以在 Protobuf 中对以 Go 表示的销售订单数据进行编码,然后用 Java 编写的接收方可以对它进行解码,以获取所接收订单数据的 Java 表示方式。这是在网络连接上的结构示意图: -``` -Go sales order--->Pbuf-encode--->network--->Pbuf-decode--->Java sales order -``` +> Go 销售订单 ---> Pbuf 编码 ---> 网络 ---> Pbuf 界面 ---> Java 销售订单 与 XML 和 JSON 相比,Protobuf 编码是二进制而不是文本,这会使调试复杂化。但是,正如本文中的代码示例所确认的那样,Protobuf 编码在大小上比 XML 或 JSON 编码要有效得多。 -Protobuf 以另一种方式提供了这种有效性。在实现级别,Protobuf 和其他编码系统对结构化数据进行序列化和反序列化。序列化将特定语言的数据结构转换为字节流,反序列化是将字节流转换回特定语言的数据结构的逆运算。序列化和反序列化可能成为数据交换的瓶颈,因为这些操作会占用大量 CPU。高效的序列化和反序列化是 Protobuf 的另一个设计目标。 +Protobuf 以另一种方式提供了这种有效性。在实现级别,Protobuf 和其他编码系统对结构化数据进行序列化serialize反序列化deserialize。序列化将特定语言的数据结构转换为字节流,反序列化是将字节流转换回特定语言的数据结构的逆运算。序列化和反序列化可能成为数据交换的瓶颈,因为这些操作会占用大量 CPU。高效的序列化和反序列化是 Protobuf 的另一个设计目标。 最近的编码技术,例如 Protobuf 和 FlatBuffers,源自 1990 年代初期的 [DCE/RPC][3](分布式计算环境/远程过程调用Distributed Computing Environment/Remote Procedure Call)计划。与 DCE/RPC 一样,Protobuf 在数据交换中为 [IDL][4](接口定义语言)和编码层做出了贡献。 @@ -47,29 +44,27 @@ interface echo { } ``` -该 IDL 文档声明了一个名为 `echo` 的过程,该过程带有三个参数:类型为 `handle_t`(实现指针)和 `idl_char`(ASCII 字符数组)的 `[in]` 参数被传递给远程过程,而 `[out]` 参数(也是一个字符串)从该过程中传回。在此示例中,`echo` 过程不会显式返回值(`echo` 左侧的 `void`),但也可以返回。返回值,以及一个或多个 `[out]` 参数,允许远程过程任意返回许多值。下一节将介绍 Protobuf IDL,它的语法不同,但同样用作数据交换中的协定。 +该 IDL 文档声明了一个名为 `echo` 的过程,该过程带有三个参数:类型为 `handle_t`(实现指针)和 `idl_char`(ASCII 字符数组)的 `[in]` 参数被传递给远程过程,而 `[out]` 参数(也是一个字符串)从该过程中传回。在此示例中,`echo` 过程不会显式返回值(`echo` 左侧的 `void`),但也可以返回值。返回值,以及一个或多个 `[out]` 参数,允许远程过程任意返回许多值。下一节将介绍 Protobuf IDL,它的语法不同,但同样用作数据交换中的协定。 DCE/RPC 和 Protobuf 中的 IDL 文档是创建用于交换数据的基础结构代码的实用程序的输入: -``` -IDL document--->DCE/PRC or Protobuf utilities--->support code for data interchange -``` +> IDL 文档 ---> DCE/PRC 或 Protobuf 实用程序 ---> 数据交换的支持代码 -作为相对简单的文本,IDL 同样是关于数据交换的细节的便于人类阅读的文档(特别是交换的数据项的数量和每个项的数据类型)。 +作为相对简单的文本,IDL 是同样便于人类阅读的关于数据交换细节的文档(特别是交换的数据项的数量和每个项的数据类型)。 -Protobuf 可用于现代 RPC 系统,例如 [gRPC][5];但是 Protobuf 本身仅提供 IDL 层和编码层,用于从发送者传递到接收者的消息。与原始的 DCE/RPC 一样,Protobuf 编码是二进制的,但效率更高。 +Protobuf 可用于现代 RPC 系统,例如 [gRPC][5];但是 Protobuf 本身仅提供 IDL 层和编码层,用于从发送者传递到接收者的消息。与原本的 DCE/RPC 一样,Protobuf 编码是二进制的,但效率更高。 -目前,XML 和 JSON 编码仍在通过 Web 服务等技术进行的数据交换中占主导地位,这些技术利用 Web 服务器、传输协议(例如 TCP、HTTP)以及标准库和实用程序等原有的基础设施来处理 XML 和 JSON 文档。 此外,各种类型的数据库系统可以存储 XML 和 JSON 文档,甚至旧式关系型系统也可以轻松生成查询结果的 XML 编码。现在,每种通用编程语言都具有支持 XML 和 JSON 的库。那么,是什么建议我们回到 Protobuf 之类的**二进制**编码系统呢? +目前,XML 和 JSON 编码仍在通过 Web 服务等技术进行的数据交换中占主导地位,这些技术利用 Web 服务器、传输协议(例如 TCP、HTTP)以及标准库和实用程序等原有的基础设施来处理 XML 和 JSON 文档。 此外,各种类型的数据库系统可以存储 XML 和 JSON 文档,甚至旧式关系型系统也可以轻松生成查询结果的 XML 编码。现在,每种通用编程语言都具有支持 XML 和 JSON 的库。那么,是什么让我们回到 Protobuf 之类的**二进制**编码系统呢? -让我们看一下负十进制值 `-128`。在 2 的补码二进制表示形式(在系统和语言中占主导地位)中,此值可以存储在单个 8 位字节中:`10000000`。此整数值在 XML 或 JSON 中的文本编码需要多个字节。例如,UTF-8 编码需要四个字节的字符串,即 `-128`,即每个字符一个字节(十六进制,值为 `0x2d`、`0x31`、`0x32` 和 `0x38`)。XML 和 JSON 还添加了标记字符,例如尖括号和大括号。有关 Protobuf 编码的详细信息下面就会介绍,但现在的关注点是一个通用点:文本编码的压缩性明显低于二进制编码。 +让我们看一下负十进制值 `-128`。以 2 的补码二进制表示形式(在系统和语言中占主导地位)中,此值可以存储在单个 8 位字节中:`10000000`。此整数值在 XML 或 JSON 中的文本编码需要多个字节。例如,UTF-8 编码需要四个字节的字符串,即 `-128`,即每个字符一个字节(十六进制,值为 `0x2d`、`0x31`、`0x32` 和 `0x38`)。XML 和 JSON 还添加了标记字符,例如尖括号和大括号。有关 Protobuf 编码的详细信息下面就会介绍,但现在的关注点是一个通用点:文本编码的压缩性明显低于二进制编码。 ### 在 Go 中使用 Protobuf 的示例 -我的代码示例着重于 Protobuf 而不是RPC。以下是第一个示例的概述: +我的代码示例着重于 Protobuf 而不是 RPC。以下是第一个示例的概述: * 名为 `dataitem.proto` 的 IDL 文件定义了一个 Protobuf 消息,它具有六个不同类型的字段:具有不同范围的整数值、固定大小的浮点值以及两个不同长度的字符串。 -* Protobuf 编译器使用 IDL 文件生成 Protobuf 消息及支持函数的 Go 特定版本(以及后来的 Java 特定版本)。 -* Go 应用程序使用随机生成的值填充原生 Go 数据结构,然后将结果序列化为本地文件。为了进行比较, XML 和 JSON 编码也被序列化为本地文件。 +* Protobuf 编译器使用 IDL 文件生成 Go 版本(以及后面的 Java 版本)的 Protobuf 消息及支持函数。 +* Go 应用程序使用随机生成的值填充原生的 Go 数据结构,然后将结果序列化为本地文件。为了进行比较, XML 和 JSON 编码也被序列化为本地文件。 * 作为测试,Go 应用程序通过反序列化 Protobuf 文件的内容来重建其原生数据结构的实例。 * 作为语言中立性测试,Java 应用程序还会对 Protobuf 文件的内容进行反序列化以获取原生数据结构的实例。 @@ -96,7 +91,7 @@ message DataItem { } ``` -该 IDL 使用当前的 proto3 而不是较早的 proto2 语法。软件包名称(在本例中为 `main`)是可选的,但是惯用的;它用于避免名称冲突。这个结构化的消息包含八个字段,每个字段都有一个 Protobuf 数据类型(例如,`int64`、`string`)、名称(例如,`oddA`、`short`)和一个等号 `=` 之后的数字标签(即键)。标签(在此示例中为 1 到 8)是唯一的整数标识符,用于确定字段序列化的顺序。 +该 IDL 使用当前的 proto3 而不是较早的 proto2 语法。软件包名称(在本例中为 `main`)是可选的,但是惯例使用它以避免名称冲突。这个结构化的消息包含八个字段,每个字段都有一个 Protobuf 数据类型(例如,`int64`、`string`)、名称(例如,`oddA`、`short`)和一个等号 `=` 之后的数字标签(即键)。标签(在此示例中为 1 到 8)是唯一的整数标识符,用于确定字段序列化的顺序。 Protobuf 消息可以嵌套到任意级别,而一个消息可以是另外一个消息的字段类型。这是一个使用 `DataItem` 消息作为字段类型的示例: @@ -118,7 +113,7 @@ enum PartnershipStatus { `reserved` 限定符确保用于实现这三个符号名的数值不能重复使用。 -为了生成一个或多个声明的 Protobuf 消息结构的特定于语言的版本,包含这些结构的 IDL 文件被传递到`protoc` 编译器(可在 [Protobuf GitHub 存储库][7]中找到)。对于 Go 代码,可以以通常的方式安装支持的 Protobuf 库(这里以 `%` 作为命令行提示符): +为了生成一个或多个声明 Protobuf 消息结构的特定于语言的版本,包含这些结构的 IDL 文件被传递到`protoc` 编译器(可在 [Protobuf GitHub 存储库][7]中找到)。对于 Go 代码,可以以通常的方式安装支持的 Protobuf 库(这里以 `%` 作为命令行提示符): ``` % go get github.com/golang/protobuf/proto @@ -130,7 +125,7 @@ enum PartnershipStatus { % protoc --go_out=. dataitem.proto ``` -标志 `--go_out` 指示编译器生成 Go 源代码。其他语言也有类似的标志。在这种情况下,结果是一个名为 `dataitem.pb.go` 的文件,该文件足够小,可以将基本内容复制到 Go 应用程序中。以下是生成的代码的主要部分: +标志 `--go_out` 指示编译器生成 Go 源代码。其他语言也有类似的标志。在这种情况下,结果是一个名为 `dataitem.pb.go` 的文件,该文件足够小,可以将其基本内容复制到 Go 应用程序中。以下是生成的代码的主要部分: ``` var _ = proto.Marshal @@ -152,9 +147,9 @@ func (*DataItem) ProtoMessage() {} func init() {} ``` -编译器生成的代码具有 Go 结构 `DataItem`,该结构导出 Go 字段(名称现已大写开头),该字段与 Protobuf IDL 中声明的名称匹配。该结构字段具有标准的 Go 数据类型:`int32`、`int64`、`float32` 和 `string`。在每个字段行的末尾,是描述 Protobuf 类型的字符串,提供 Protobuf IDL 文档中的数字标签并提供有关 JSON 信息的元数据,这将在后面讨论。 +编译器生成的代码具有 Go 结构 `DataItem`,该结构导出 Go 字段(名称现已大写开头),该字段与 Protobuf IDL 中声明的名称匹配。该结构字段具有标准的 Go 数据类型:`int32`、`int64`、`float32` 和 `string`。在每个字段行的末尾,是描述 Protobuf 类型的字符串,提供 Protobuf IDL 文档中的数字标签及有关 JSON 信息的元数据,这将在后面讨论。 -此外也有函数;最重要的是 `Proto.Marshal`,用于将 `DataItem` 结构的实例序列化为 Protobuf格式。辅助函数包括:清除 `DataItem` 结构的 `Reset`,生成 `DataItem` 的单行字符串表示的 `String`。 +此外也有函数;最重要的是 `Proto.Marshal`,用于将 `DataItem` 结构的实例序列化为 Protobuf 格式。辅助函数包括:清除 `DataItem` 结构的 `Reset`,生成 `DataItem` 的单行字符串表示的 `String`。 描述 Protobuf 编码的元数据应在更详细地分析 Go 程序之前进行仔细研究。 @@ -162,7 +157,7 @@ func init() {} Protobuf 消息的结构为键/值对的集合,其中数字标签为键,相应的字段为值。字段名称(例如,`oddA` 和 `small`)是供人类阅读的,但是 `protoc` 编译器的确使用了字段名称来生成特定于语言的对应名称。例如,Protobuf IDL 中的 `oddA` 和 `small` 名称在 Go 结构中分别成为字段 `OddA` 和 `Small`。 -键和它们的值都被编码,但是有一个重要的区别:一些数字值具有固定大小的 32 或 64 位的编码,而其他数字(包括消息标签)则是 `varint` 编码的,位数取决于整数的绝对值。例如,整数值 1 到 15 需要 8 位 `varint` 编码,而值 16 到 2047 需要 16 位。`varint` 编码在本质上与 UTF-8 编码类似(但细节不同),它偏爱较小的整数值而不是较大的整数值。(有关详细分析,请参见 Protobuf [编码指南][8])结果是,Protobuf 消息应该在字段中具有较小的整数值(如果可能),并且键数应尽可能少,但每个字段只有一个键是必不可少的。 +键和它们的值都被编码,但是有一个重要的区别:一些数字值具有固定大小的 32 或 64 位的编码,而其他数字(包括消息标签)则是 `varint` 编码的,位数取决于整数的绝对值。例如,整数值 1 到 15 需要 8 位 `varint` 编码,而值 16 到 2047 需要 16 位。`varint` 编码在本质上与 UTF-8 编码类似(但细节不同),它偏爱较小的整数值而不是较大的整数值。(有关详细分析,请参见 Protobuf [编码指南][8])结果是,Protobuf 消息应该在字段中具有较小的整数值(如果可能),并且键数应尽可能少,但每个字段至少得有一个键。 下表 1 列出了 Protobuf 编码的要点: @@ -184,32 +179,32 @@ message DataItems { } ``` -`repeated` 表示 `DataItem` 实例是*打包的*:集合具有单个标签,在这种情况下为 1。因此,具有重复的 `DataItem` 实例的 `DataItems` 消息比具有多个但单独的 `DataItem` 字段,每个字段都需要自己的标签的消息的效率更高。 +`repeated` 表示 `DataItem` 实例是*打包的*:集合具有单个标签,在这里是 1。因此,具有重复的 `DataItem` 实例的 `DataItems` 消息比具有多个但单独的 `DataItem` 字段、每个字段都需要自己的标签的消息的效率更高。 -考虑到这一背景,让我们回到 Go 程序。 +了解了这一背景,让我们回到 Go 程序。 ### dataItem 程序的细节 -`dataItem` 程序创建一个 `DataItem` 实例,并使用适当类型的随机生成的值填充字段。Go 有一个 `rand` 包,带有用于生成伪随机整数和浮点值的函数,而我的 `randString` 函数可以从字符集中生成指定长度的伪随机字符串。设计目标是要有一个具有不同类型和位大小的字段值的 `DataItem` 实例。例如,`OddA` 和 `EvenA` 值分别是奇偶校验的 64 位非负整数值;但是 `OddB` 和 `EvenB` 变体的大小为 32 位,并存放 0 到 2047 之间的小整数值。随机浮点值的大小为 32 位,字符串为 16(`Short`)和 32(`Long`)字符的长度。这是用随机值填充 `DataItem` 结构的代码段: +`dataItem` 程序创建一个 `DataItem` 实例,并使用适当类型的随机生成的值填充字段。Go 有一个 `rand` 包,带有用于生成伪随机整数和浮点值的函数,而我的 `randString` 函数可以从字符集中生成指定长度的伪随机字符串。设计目标是要有一个具有不同类型和位大小的字段值的 `DataItem` 实例。例如,`OddA` 和 `EvenA` 值分别是 64 位非负整数值的奇数和偶数;但是 `OddB` 和 `EvenB` 变体的大小为 32 位,并存放 0 到 2047 之间的小整数值。随机浮点值的大小为 32 位,字符串为 16(`Short`)和 32(`Long`)字符的长度。这是用随机值填充 `DataItem` 结构的代码段: ``` -// variable-length integers -n1 := rand.Int63() // bigger integer -if (n1 & 1) == 0 { n1++ } // ensure it's odd +// 可变长度整数 +n1 := rand.Int63() // 大整数 +if (n1 & 1) == 0 { n1++ } // 确保其是奇数 ... -n3 := rand.Int31() % UpperBound // smaller integer -if (n3 & 1) == 0 { n3++ } // ensure it's odd +n3 := rand.Int31() % UpperBound // 小整数 +if (n3 & 1) == 0 { n3++ } // 确保其是奇数 -// fixed-length floats +// 固定长度浮点数 ... t1 := rand.Float32() t2 := rand.Float32() ... -// strings +// 字符串 str1 := randString(StrShort) str2 := randString(StrLong) -// the message +// 消息 dataItem := &DataItem { OddA: n1, EvenA: n2, @@ -237,7 +232,7 @@ func encodeAndserialize(dataItem *DataItem) { } ``` -这三个序列化函数使用术语 `marshal`,它与 `serialize` 意思大致相同。如代码所示,三个 `Marshal` 函数均返回一个字节数组,然后将其写入文件。(为简单起见,可能的错误将被忽略处理。)在示例运行中,文件大小为: +这三个序列化函数使用术语 `marshal`,它与 `serialize` 意思大致相同。如代码所示,三个 `Marshal` 函数均返回一个字节数组,然后将其写入文件。(为简单起见,忽略可能的错误处理。)在示例运行中,文件大小为: ``` dataitem.xml:  262 bytes @@ -266,7 +261,7 @@ Protobuf 编码明显小于其他两个编码方案。通过消除缩进字符 ### 测试序列化和反序列化 -Go 程序接下来通过将先前写入 `dataitem.pbuf` 文件的字节反序列化为 `DataItem` 实例来运行基本测试。这是代码段,其中除去了错误检查部分: +Go 程序接下来通过将先前写入 `dataitem.pbuf` 文件的字节反序列化为 `DataItem` 实例来运行基本测试。这是代码段,其中去除了错误检查部分: ``` filebytes, err := ioutil.ReadFile(PbufFile) // get the bytes from the file @@ -291,7 +286,7 @@ boPb#T0O8Xd&Ps5EnSZqDg4Qztvo7IIs 9vH66AiGSQgCDxk& ### 一个 Java Protobuf 客户端 -Java 中的示例是为了确认 Protobuf 的语言中立性。原始 IDL 文件可用于生成 Java 支持代码,其中涉及嵌套类。但是,为了抑制警告信息,可以进行一些补充。这是修订版,它指定了一个 `DataMsg` 作为外部类的名称,内部类在 Protobuf 消息后自动命名为 `DataItem`: +用 Java 写的示例是为了确认 Protobuf 的语言中立性。原始 IDL 文件可用于生成 Java 支持代码,其中涉及嵌套类。但是,为了抑制警告信息,可以进行一些补充。这是修订版,它指定了一个 `DataMsg` 作为外部类的名称,内部类在该 Protobuf 消息后面自动命名为 `DataItem`: ``` syntax = "proto3"; @@ -304,7 +299,7 @@ message DataItem { ... ``` -进行此更改后,`protoc` 编译与以前相同,只是所预期的输出现在是 Java 而不是 Go: +进行此更改后,`protoc` 编译与以前相同,只是所期望的输出现在是 Java 而不是 Go: ``` % protoc --java_out=. dataitem.proto @@ -333,11 +328,11 @@ public class Main { } ``` -当然,生产级的测试将更加彻底,但是即使是该初步测试也可以证明 Protobuf 的语言中立性:`dataitem.pbuf` 文件是 Go 程序对 Go `DataItem` 进行序列化的结果,并且该文件中的字节被反序列化以在 Java 中产生一个 `DataItem` 实例。Java 测试的输出与 Go 测试的输出相同。 +当然,生产级的测试将更加彻底,但是即使是该初步测试也可以证明 Protobuf 的语言中立性:`dataitem.pbuf` 文件是 Go 程序对 Go 语言版的 `DataItem` 进行序列化的结果,并且该文件中的字节被反序列化以产生一个 Java 语言的 `DataItem` 实例。Java 测试的输出与 Go 测试的输出相同。 ### 用 numPairs 程序来结束 -让我们以一个突出 Protobuf 效率但又强调在任何编码技术中都会涉及到的成本的示例作为结尾。考虑以下 Protobuf IDL 文件: +让我们以一个示例作为结尾,来突出 Protobuf 效率,但又强调在任何编码技术中都会涉及到的成本。考虑以下 Protobuf IDL 文件: ``` syntax = "proto3"; @@ -438,11 +433,10 @@ func main() { } ``` -每个 `NumPair` 中随机生成的奇数和偶数值的范围在 0 到 20 亿之间变化。就原始数据(而非编码数据)而言,Go 程序中生成的整数加起来为 16MB:每个 `NumPair` 为两个整数,总计为 400 万个整数,每个值的大小为四个字节。 +每个 `NumPair` 中随机生成的奇数和偶数值的范围在 0 到 20 亿之间变化。就原始数据(而非编码数据)而言,Go 程序中生成的整数总共为 16MB:每个 `NumPair` 为两个整数,总计为 400 万个整数,每个值的大小为四个字节。 为了进行比较,下表列出了 XML、JSON 和 Protobuf 编码的示例 `NumsPairs` 消息的 200 万个 `NumPair` 实例。原始数据也包括在内。由于 `numPairs` 程序生成随机值,因此样本运行的输出有所不同,但接近表中显示的大小。 - 编码 | 文件 | 字节大小 | Pbuf/其它 比例 ---|---|---|--- 无 | pairs.raw | 16MB | 169% @@ -452,9 +446,9 @@ XML | pairs.xml | 126MB | 21% *表 2. 16MB 整数的编码开销* -不出所料,Protobuf 和之后的 XML 和 JSON 差别明显。Protobuf 编码大约是 JSON 的四分之一,而是 XML 的五分之一。但是原始数据清楚地表明 Protobuf 会产生编码开销:序列化的 Protobuf 消息比原始数据大 11MB。包括 Protobuf 在内的任何编码都涉及结构化数据,这不可避免地会增加字节。 +不出所料,Protobuf 和之后的 XML 和 JSON 差别明显。Protobuf 编码大约是 JSON 的四分之一,是 XML 的五分之一。但是原始数据清楚地表明 Protobuf 也会产生编码开销:序列化的 Protobuf 消息比原始数据大 11MB。包括 Protobuf 在内的任何编码都涉及结构化数据,这不可避免地会增加字节。 -序列化的 200 万个 `NumPair` 实例中的每个实例都包含**四**个整数值:Go 结构中的 `Even` 和 `Odd` 字段分别一个,而 Protobuf 编码中的每个字段每个标签一个。作为原始数据而不是编码数据,每个实例将达到 16 个字节,样本 `NumPairs` 消息中有 200 万个实例。但是 Protobuf 标记(如 `NumPair` 字段中的 `int32` 值)使用 `varint` 编码,因此字节长度有所不同。特别是,小的整数值(在这种情况下,包括标签在内)需要不到四个字节进行编码。 +序列化的 200 万个 `NumPair` 实例中的每个实例都包含**四**个整数值:Go 结构中的 `Even` 和 `Odd` 字段分别一个,而 Protobuf 编码中的每个字段、每个标签一个。对于原始数据(而不是编码数据),每个实例将达到 16 个字节,样本 `NumPairs` 消息中有 200 万个实例。但是 Protobuf 标记(如 `NumPair` 字段中的 `int32` 值)使用 `varint` 编码,因此字节长度有所不同。特别是,小的整数值(在这种情况下,包括标签在内)需要不到四个字节进行编码。 如果对 `numPairs` 程序进行了修改,以使两个 `NumPair` 字段的值小于 2048,且其编码为一或两个字节,则 Protobuf 编码将从 27MB 下降到 16MB,这正是原始数据的大小。下表总结了样本运行中的新编码大小。 @@ -467,7 +461,7 @@ XML | pairs.xml | 103MB | 15% *表 3. 编码 16MB 的小于 2048 的整数* -总之,修改后的 `numPairs` 程序的字段值小于 2048,可减少原始数据中每个整数值的四字节大小。但是 Protobuf 编码仍然需要标签,这些标签会在 Protobuf 消息中添加字节。Protobuf 编码确实会增加消息大小,但是如果要编码相对较小的整数值(无论是字段还是键),则可以通过 `varint` 因子来减少此开销。 +总之,修改后的 `numPairs` 程序的字段值小于 2048,可减少原始数据中每个四字节整数值的大小。但是 Protobuf 编码仍然需要标签,这些标签会在 Protobuf 消息中添加字节。Protobuf 编码确实会增加消息大小,但是如果要编码相对较小的整数值(无论是字段还是键),则可以通过 `varint` 因子来减少此开销。 对于包含混合类型的结构化数据(且整数值相对较小)的中等大小的消息,Protobuf 明显优于 XML 和 JSON 等选项。在其他情况下,数据可能不适合 Protobuf 编码。例如,如果两个应用程序需要共享大量文本记录或大整数值,则可以采用压缩而不是编码技术。 @@ -478,7 +472,7 @@ via: https://opensource.com/article/19/10/protobuf-data-interchange 作者:[Marty Kalin][a] 选题:[lujun9972][b] 译者:[wxy](https://github.com/wxy) -校对:[校对者ID](https://github.com/校对者ID) +校对:[wxy](https://github.com/wxy) 本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出