翻译完成

This commit is contained in:
MjSeven 2023-05-14 11:23:08 +08:00
parent 57dc0465c1
commit 014d9700d9
2 changed files with 334 additions and 333 deletions

View File

@ -1,333 +0,0 @@
[#]: subject: "Why does 0.1 + 0.2 = 0.30000000000000004?"
[#]: via: "https://jvns.ca/blog/2023/02/08/why-does-0-1-plus-0-2-equal-0-30000000000000004/"
[#]: author: "Julia Evans https://jvns.ca/"
[#]: collector: "lkxed"
[#]: translator: "MjSeven"
[#]: reviewer: " "
[#]: publisher: " "
[#]: url: " "
Why does 0.1 + 0.2 = 0.30000000000000004?
======
Hello! I was trying to write about floating point yesterday, and I found myself wondering about this calculation, with 64-bit floats:
```
>>> 0.1 + 0.2
0.30000000000000004
```
I realized that I didnt understand exactly how it worked. I mean, I know floating point calculations are inexact, and I know that you cant exactly represent `0.1` in binary, but: theres a floating point number thats closer to 0.3 than `0.30000000000000004`! So why do we get the answer `0.30000000000000004`?
If you dont feel like reading this whole post with a bunch of calculations, the short answer is that `0.1000000000000000055511151231257827021181583404541015625 + 0.200000000000000011102230246251565404236316680908203125` lies exactly between 2 floating point numbers, `0.299999999999999988897769753748434595763683319091796875` (usually printed as `0.3`) and `0.3000000000000000444089209850062616169452667236328125` (usually printed as `0.30000000000000004`). The answer is `0.30000000000000004` (the second one) because its significand is even.
#### how floating point addition works
This is roughly how floating point addition works:
- Add together the numbers (with extra precision)
- Round the result to the nearest floating point number
So lets use these rules to calculate 0.1 + 0.2. I just learned how floating point addition works yesterday so its possible Ive made some mistakes in this post, but I did get the answers I expected at the end.
#### step 1: find out what 0.1 and 0.2 are
First, lets use Python to figure out what the exact values of `0.1` and `0.2` are, as 64-bit floats.
```
>>> f"{0.1:.80f}"
'0.10000000000000000555111512312578270211815834045410156250000000000000000000000000'
>>> f"{0.2:.80f}"
'0.20000000000000001110223024625156540423631668090820312500000000000000000000000000'
```
These really are the exact values: because floating point numbers are in base 2, you can represent them all exactly in base 10. You just need a lot of digits sometimes :)
#### step 2: add the numbers together
Next, lets add those numbers together. We can add the fractional parts together as integers to get the exact answer:
```
>>> 1000000000000000055511151231257827021181583404541015625 + 2000000000000000111022302462515654042363166809082031250
3000000000000000166533453693773481063544750213623046875
```
So the exact sum of those two floating point numbers is `0.3000000000000000166533453693773481063544750213623046875`
This isnt our final answer though because `0.3000000000000000166533453693773481063544750213623046875` isnt a 64-bit float.
#### step 3: look at the nearest floating point numbers
Now, lets look at the floating point numbers around `0.3`. Heres the closest floating point number to `0.3` (usually written as just `0.3`, even though that isnt its exact value):
```
>>> f"{0.3:.80f}"
'0.29999999999999998889776975374843459576368331909179687500000000000000000000000000'
```
We can figure out the next floating point number after `0.3` by serializing `0.3` to 8 bytes with `struct.pack`, adding 1, and then using `struct.unpack`:
```
>>> struct.pack("!d", 0.3)
b'?\xd3333333'
# manually add 1 to the last byte
>>> next_float = struct.unpack("!d", b'?\xd3333334')[0]
>>> next_float
0.30000000000000004
>>> f"{next_float:.80f}"
'0.30000000000000004440892098500626161694526672363281250000000000000000000000000000'
```
Apparently you can also do this with `math.nextafter`:
```
>>> math.nextafter(0.3, math.inf)
0.30000000000000004
```
So the two 64-bit floats around `0.3` are `0.299999999999999988897769753748434595763683319091796875` and
`0.3000000000000000444089209850062616169452667236328125`
#### step 4: find out which one is closest to our result
It turns out that `0.3000000000000000166533453693773481063544750213623046875` is exactly in the middle of
`0.299999999999999988897769753748434595763683319091796875` and `0.3000000000000000444089209850062616169452667236328125`.
You can see that with this calculation:
```
>>> (3000000000000000444089209850062616169452667236328125000 + 2999999999999999888977697537484345957636833190917968750) // 2 == 3000000000000000166533453693773481063544750213623046875
True
```
So neither of them is closest.
#### how does it know which one to round to?
In the binary representation of a floating point number, theres a number called the “significand”. In cases like this (where the result is exactly in between 2 successive floating point number, itll round to the one with the even significand.
In this case thats `0.300000000000000044408920985006261616945266723632812500`
We actually saw the significand of this number a bit earlier:
- 0.30000000000000004 is `struct.unpack('!d', b'?\xd3333334')`
- 0.3 is `struct.unpack('!d', b'?\xd3333333')`
The last digit of the big endian hex representation of `0.30000000000000004` is `4`, so thats the one with the even significand (because the significand is at the end).
#### lets also work out the whole calculation in binary
Above we did the calculation in decimal, because thats a little more intuitive to read. But of course computers dont do these calculations in decimal theyre done in a base 2 representation. So I wanted to get an idea of how that worked too.
I dont think this binary calculation part of the post is particularly clear but it was helpful for me to write out. There are a really a lot of numbers and it might be terrible to read.
#### how 64-bit floats numbers work: exponent and significand
64-bit floating point numbers are represented with 2 integers: an **exponent** and the **significand** and a 1-bit **sign**.
Heres the equation of how the exponent and significand correspond to an actual number
$$\text{sign} \times 2^\text{exponent} (1 + \frac{\text{significand}}{2^{52}})$$
For example if the exponent was `1` the significand was `2**51`, and the sign was positive, wed get
$$2^{1} (1 + \frac{2^{51}}{2^{52}})$$
which is equal to `2 * (1 + 0.5)` , or 3.
#### step 1: get the exponent and significand for 0.1 and 0.2
I wrote some inefficient functions to get the exponent and significand of a positive float in Python:
```
def get_exponent(f):
# get the first 12 bytes
bytestring = struct.pack('!d', f)
return int.from_bytes(bytestring, byteorder='big') >> 52
def get_significand(f):
# get the last 52 bytes
bytestring = struct.pack('!d', f)
x = int.from_bytes(bytestring, byteorder='big')
exponent = get_exponent(f)
return x ^ (exponent << 52)
```
Im ignoring the sign bit (the first bit) because we only need these functions to work on two numbers (0.1 and 0.2) and those two numbers are both positive.
First, lets get the exponent and significand of 0.1. We need to subtract 1023 to get the actual exponent because thats how floating point works.
```
>>> get_exponent(0.1) - 1023
-4
>>> get_significand(0.1)
2702159776422298
```
The way these numbers work together to get `0.1` is `2**exponent + significand / 2**(52 - exponent)`.
Heres that calculation in Python:
```
>>> 2**-4 + 2702159776422298 / 2**(52 + 4)
0.1
```
(you might legitimately be worried about floating point accuracy issues with this calculation, but in this case Im pretty sure its fine because these numbers by definition dont have accuracy issues the floating point numbers starting at `2**-4` go up in steps of `1/2**(52 + 4)`)
We can do the same thing for `0.2`:
```
>>> get_exponent(0.2) - 1023
-3
>>> get_significand(0.2)
2702159776422298
```
And heres how that exponent and significand work together to get `0.2`:
```
>>> 2**-3 + 2702159776422298 / 2**(52 + 3)
0.2
```
(by the way, its not a coincidence that 0.1 and 0.2 have the same significand its because `x` and `2*x` always have the same significand)
#### step 2: rewrite 0.1 to have a bigger exponent
`0.2` has a bigger exponent than `0.1` -3 instead of -4.
So we need to rewrite
```
2**-4 + 2702159776422298 / 2**(52 + 4)
```
to be `X / (2**52 + 3)`
If we solve for X in `2**-4 + 2702159776422298 / 2**(52 + 4) = X / (2**52 + 3)`, we get:
`X = 2**51 + 2702159776422298 /2`
We can calculate that in Python pretty easily:
```
>>> 2**51 + 2702159776422298 //2
3602879701896397
```
#### step 3: add the significands
Now were trying to do this addition
```
2**-3 + 2702159776422298 / 2**(52 + 3) + 3602879701896397 / 2**(52 + 3)
```
So we need to add together `2702159776422298` and `3602879701896397`
```
>>> 2702159776422298 + 3602879701896397
6305039478318695
```
Cool. But `6305039478318695` is more than 2**52 - 1 (the maximum value for a significand), so we have a problem:
```
>>> 6305039478318695 > 2**52
True
```
#### step 4: increase the exponent
Right now our answer is
```
2**-3 + 6305039478318695 / 2**(52 + 3)
```
First, lets subtract 2**52 to get
```
2**-2 + 1801439850948199 / 2**(52 + 3)
```
This is almost perfect, but the `2**(52 + 3)` at the end there needs to be a `2**(52 + 2)`.
So we need to divide 1801439850948199 by 2. This is where we run into inaccuracies `1801439850948199` is odd!
```
>>> 1801439850948199 / 2
900719925474099.5
```
Its exactly in between two integers, so we round to the nearest even number (which is what the floating point specification says to do), so our final floating point number result is:
```
>>> 2**-2 + 900719925474100 / 2**(52 + 2)
0.30000000000000004
```
Thats the answer we expected:
```
>>> 0.1 + 0.2
0.30000000000000004
```
#### this probably isnt exactly how it works in hardware
The way Ive described the operations here isnt literally exactly what happens when you do floating point addition (its not “solving for X” for example), Im sure there are a lot of efficient tricks. But I think its about the same idea.
#### printing out floating point numbers is pretty weird
We said earlier that the floating point number 0.3 isnt equal to 0.3. Its actually this number:
```
>>> f"{0.3:.80f}"
'0.29999999999999998889776975374843459576368331909179687500000000000000000000000000'
```
So when you print out that number, why does it display `0.3`?
The computer isnt actually printing out the exact value of the number, instead its printing out the _shortest_ decimal number `d` which has the property that our floating point number `f` is the closest floating point number to `d`.
It turns out that doing this efficiently isnt trivial at all, and there are a bunch of academic papers about it like [Printing Floating-Point Numbers Quickly and Accurately][1]. or [How to print floating point numbers accurately][2].
#### would it be more intuitive if computers printed out the exact value of a float?
Rounding to a nice clean decimal value is nice, but in a way I feel like it might be more intuitive if computers just printed out the exact value of a floating point number it might make it seem a lot less surprising when you get weird results.
To me, 0.1000000000000000055511151231257827021181583404541015625 + 0.200000000000000011102230246251565404236316680908203125 = 0.3000000000000000444089209850062616169452667236328125 feels less surprising than 0.1 + 0.2 = 0.30000000000000004.
Probably this is a bad idea, it would definitely use a lot of screen space.
#### a quick note on PHP
Someone in the comments somewhere pointed out that `<?php echo (0.1 + 0.2 );?>` prints out `0.3`. Does that mean that floating point math is different in PHP?
I think the answer is no if I run:
`<?php echo (0.1 + 0.2 )- 0.3);?>` on [this page][3], I get the exact same answer as in Python 5.5511151231258E-17. So it seems like the underlying floating point math is the same.
I think the reason that `0.1 + 0.2` prints out `0.3` in PHP is that PHPs algorithm for displaying floating point numbers is less precise than Pythons itll display `0.3` even if that number isnt the closest floating point number to 0.3.
#### thats all!
I kind of doubt that anyone had the patience to follow all of that arithmetic, but it was helpful for me to write down, so Im publishing this post anyway. Hopefully some of this makes sense.
--------------------------------------------------------------------------------
via: https://jvns.ca/blog/2023/02/08/why-does-0-1-plus-0-2-equal-0-30000000000000004/
作者:[Julia Evans][a]
选题:[lkxed][b]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://jvns.ca/
[b]: https://github.com/lkxed/
[1]: https://legacy.cs.indiana.edu/~dyb/pubs/FP-Printing-PLDI96.pdf
[2]: https://lists.nongnu.org/archive/html/gcl-devel/2012-10/pdfkieTlklRzN.pdf
[3]: https://replit.com/languages/php_cli

View File

@ -0,0 +1,334 @@
[#]: subject: "Why does 0.1 + 0.2 = 0.30000000000000004?"
[#]: via: "https://jvns.ca/blog/2023/02/08/why-does-0-1-plus-0-2-equal-0-30000000000000004/"
[#]: author: "Julia Evans https://jvns.ca/"
[#]: collector: "lkxed"
[#]: translator: "MjSeven"
[#]: reviewer: " "
[#]: publisher: " "
[#]: url: " "
为什么 0.1 + 0.2 = 0.30000000000000004
======
嗨!昨天我试着写点关于浮点数的东西,我发现自己对这个 64 位浮点数的计算方法很好奇:
```
>>> 0.1 + 0.2
0.30000000000000004
```
我意识到我并没有完全理解它是如何计算的。我的意思是,我知道浮点计算是不精确的,你不能精确地用二进制表示 `0.1`,但是:肯定有一个浮点数比 `0.30000000000000004` 更接近 0.3!那为什么答案是 `0.30000000000000004` 呢?
如果你不想阅读一大堆计算过程,那么简短的答案是: `0.1000000000000000055511151231257827021181583404541015625 + 0.200000000000000011102230246251565404236316680908203125` 正好位于两个浮点数之间,即 `0.299999999999999988897769753748434595763683319091796875` (通常打印为 `0.3``0.3000000000000000444089209850062616169452667236328125`(通常打印为 `0.30000000000000004`)。答案是 `0.30000000000000004`,因为它的尾数是偶数。
#### 浮点加法是如何计算的
以下是浮点加法的简要计算原理:
- 把它们精确的数字加在一起
- 将结果四舍五入到最接近的浮点数
让我们用这些规则来计算 0.1+0.2。我昨天才刚了解浮点加法的计算原理,所以在这篇文章中我可能犯了一些错误,但最终我得到了期望的答案。
#### 第一步0.1 和 0.2 到底是多少
首先,让我们用 Python 计算 `0.1``0.2` 的 64 位浮点值。
```
>>> f"{0.1:.80f}"
'0.10000000000000000555111512312578270211815834045410156250000000000000000000000000'
>>> f"{0.2:.80f}"
'0.20000000000000001110223024625156540423631668090820312500000000000000000000000000'
```
这确实很精确:因为浮点数是二进制的,你也可以使用十进制来精确的表示。但有时你只是需要一大堆数字:)
#### 第二步:相加
接下来,把它们加起来。我们可以将小数部分作为整数加起来得到确切的答案:
```
>>> 1000000000000000055511151231257827021181583404541015625 + 2000000000000000111022302462515654042363166809082031250
3000000000000000166533453693773481063544750213623046875
```
所以这两个浮点数的和是 `0.3000000000000000166533453693773481063544750213623046875`
但这并不是最终答案,因为它不是一个 64 位浮点数。
#### 第三步:查找最接近的浮点数
现在,让我们看看接近 `0.3` 的浮点数。下面是最接近 `0.3` 的浮点数(它通常写为 `0.3`,尽管它不是确切值):
```
>>> f"{0.3:.80f}"
'0.29999999999999998889776975374843459576368331909179687500000000000000000000000000'
```
我们可以通过 `struct.pack``0.3` 序列化为 8 字节来计算出它之后的下一个浮点数,加上 1然后使用 `struct.unpack`
```
>>> struct.pack("!d", 0.3)
b'?\xd3333333'
# 手动加 1
>>> next_float = struct.unpack("!d", b'?\xd3333334')[0]
>>> next_float
0.30000000000000004
>>> f"{next_float:.80f}"
'0.30000000000000004440892098500626161694526672363281250000000000000000000000000000'
```
当然,你也可以用 `math.nextafter`
```
>>> math.nextafter(0.3, math.inf)
0.30000000000000004
```
所以 `0.3` 附近的两个 64 位浮点数是 `0.299999999999999988897769753748434595763683319091796875`
`0.3000000000000000444089209850062616169452667236328125`
#### 第四步:找出哪一个最接近
结果证明 `0.3000000000000000166533453693773481063544750213623046875` 正好在
`0.299999999999999988897769753748434595763683319091796875``0.3000000000000000444089209850062616169452667236328125` 的中间。
你可以通过以下计算看到:
```
>>> (3000000000000000444089209850062616169452667236328125000 + 2999999999999999888977697537484345957636833190917968750) // 2 == 3000000000000000166533453693773481063544750213623046875
True
```
所以它们都不是最接近的。
#### 如何知道四舍五入到哪一个?
在浮点数的二进制表示中,有一个数字称为“尾数”。这种情况下(结果正好在两个连续的浮点数之间),它将四舍五入到偶数尾数的那个。
在本例中为 `0.300000000000000044408920985006261616945266723632812500`
我们之前就见到了这个数字的尾数:
- 0.30000000000000004 是 `struct.unpack('!d', b'?\xd3333334')` 的结果
- 0.3 是 `struct.unpack('!d', b'?\xd3333333')` 的结果
`0.30000000000000004` 的大端十六进制表示的最后一位数字是 `4`,它的尾数是偶数(因为尾数在末尾)。
#### 我们用二进制来算一下
之前我们都是使用十进制来计算的,这样读起来更直观。但是计算机并不会使用十进制,而是用 2 进制,所以我想知道它是如何计算的。
我不认为本文的二进制计算部分特别清晰,但它写出来对我很有帮助。有很多数字,读起来可能很糟糕。
#### 64 位浮点数如何计算:指数和尾数
64 位浮点数由 2 部分整数构成:**指数**和**尾数**,还有 1 比特 **符号位**.
以下是指数和尾数对应于实际数字的方程:
$$\text{sign} \times 2^\text{exponent} (1 + \frac{\text{significand}}{2^{52}})$$
例如,如果指数是 `1`,尾数是 `2^^51`,符号位是正的,那么就可以得到:
$$2^{1} (1 + \frac{2^{51}}{2^{52}})$$
它等于 `2 * (1 + 0.5)`,即 3。
#### 步骤 1获取 0.1 和 0.2 的指数和尾数
我用 Python 编写了一些to 校正:这里原文加了一个 inefficient 形容词,不知道如何翻译)函数来获取正浮点数的指数和尾数:
```python
def get_exponent(f):
# 获取前 52 个字节
bytestring = struct.pack('!d', f)
return int.from_bytes(bytestring, byteorder='big') >> 52
def get_significand(f):
# 获取后 52 个字节
bytestring = struct.pack('!d', f)
x = int.from_bytes(bytestring, byteorder='big')
exponent = get_exponent(f)
return x ^ (exponent << 52)
```
我忽略了符号位(第一位),因为我们只需要处理 0.1 和 0.2,它们都是正数。
首先,让我们获取 0.1 的指数和尾数。我们需要减去 1023 来得到实际的指数,因为浮点运算就是这么计算的。
```
>>> get_exponent(0.1) - 1023
-4
>>> get_significand(0.1)
2702159776422298
```
它们根据 `2**指数 + 尾数 / 2**(52 - 指数)` 这个公式得到 `0.1`
下面是 Python 中的计算:
```
>>> 2**-4 + 2702159776422298 / 2**(52 + 4)
0.1
```
(你可能会担心这种计算的浮点精度问题,但在本例中,我很确定它没问题。因为根据定义,这些数字没有精度问题 -- 从 `2**-4` 开始的浮点数以 `1/2**(52 + 4)` 步长递增。)
`0.2` 也一样:
```
>>> get_exponent(0.2) - 1023
-3
>>> get_significand(0.2)
2702159776422298
```
它们共同工作得到 `0.2`:
```
>>> 2**-3 + 2702159776422298 / 2**(52 + 3)
0.2
```
顺便说一下0.1 和 0.2 具有相同的尾数并不是巧合 —— 因为 `x``2*x` 总是有相同的尾数。)
#### 步骤 2重新计算 0.1 以获得更大的指数
`0.2` 的指数比 `0.1` 大 -- -3 大于 -4。
所以我们需要重新计算:
```
2**-4 + 2702159776422298 / 2**(52 + 4)
```
等于 `X / (2**52 + 3)`
如果我们解出 `2**-4 + 2702159776422298 / 2**(52 + 4) = X / (2**52 + 3)`,我们能得到:
`X = 2**51 + 2702159776422298 /2`
在 Python 中,我们很容易得到:
```
>>> 2**51 + 2702159776422298 //2
3602879701896397
```
#### 步骤 3添加符号位
现在我们试着做加法:
```
2**-3 + 2702159776422298 / 2**(52 + 3) + 3602879701896397 / 2**(52 + 3)
```
我们需要将 `2702159776422298``3602879701896397` 相加:
```
>>> 2702159776422298 + 3602879701896397
6305039478318695
```
棒。但是 `6305039478318695` 比 2**52-1尾数的最大值问题来了:
```
>>> 6305039478318695 > 2**52
True
```
#### 第四步:增加指数
目前结果是:
```
2**-3 + 6305039478318695 / 2**(52 + 3)
```
首先,它减去 2**52
```
2**-2 + 1801439850948199 / 2**(52 + 3)
```
完美,但最后的 `2**(52 + 3)` 需要改为 `2**(52 + 2)`
我们需要将 1801439850948199 除以 2。这就是难题的地方 -- `1801439850948199` 是一个奇数!
```
>>> 1801439850948199 / 2
900719925474099.5
```
它正好在两个整数之间,所以我们四舍五入到最接近它的偶数(这是浮点运算规范要求的),所以最终的浮点结果是:
```
>>> 2**-2 + 900719925474100 / 2**(52 + 2)
0.30000000000000004
```
它就是我们预期的结果:
```
>>> 0.1 + 0.2
0.30000000000000004
```
#### 在硬件中它可能并不是这样工作的
在硬件中做浮点数加法,以上操作方式可能并不完全一模一样(例如,它并不是求解 "X"),我相信有很多有效的技巧,但我认为思想是类似的。
#### 打印浮点数是非常奇怪的
我们之前说过,浮点数 0.3 不等于 0.3。它实际上是:
```
>>> f"{0.3:.80f}"
'0.29999999999999998889776975374843459576368331909179687500000000000000000000000000'
```
但是当你打印它时,为什么会显示 `0.3`
计算机实际上并没有打印出数字的精确值,而是打印出了*最短*的十进制数 `d`,其中 `f` 是最接近 `d` 的浮点数。
事实证明,有效做到这一点很不简单,有很多关于它的学术论文,比如[快速且准确地打印浮点数][1]、[如何准确打印浮点数][2]等。
#### 如果计算机打印出浮点数的精确值,会不会更直观一些?
四舍五入到一个干净的十进制值很好,但在某种程度上,我觉得如果计算机只打印一个浮点数的精确值可能会更直观 -- 当你得到一个奇怪的结果时,它可能会让你看起来不那么惊讶。
对我来说0.1000000000000000055511151231257827021181583404541015625 + 0.200000000000000011102230246251565404236316680908203125 = 0.3000000000000000444089209850062616169452667236328125比0.1 + 0.2 = 0.30000000000000000004 惊讶少一点。
这也许是一个坏主意,因为它肯定会占用大量的屏幕空间。
#### PHP 快速说明
有人在评论中指出在 PHP 中 `<?php echo (0.1 + 0.2 );?>` 会输出 `0.3`,这是否说明在 PHP 中浮点运算不一样?
非也 -- 我在[这个链接][3]中运行:
`<?php echo (0.1 + 0.2 )- 0.3);?>`,得到了与 Python 完全相同的答案5.5511151231258E-17。因此浮点运算的基本原理是一样的。
我认为在 PHP 中 `0.1 + 0.2` 输出 `0.3` 的原因是 PHP 显示浮点数的算法没有 Python 精确 —— 即使这个数字不是最接近 0.3 的浮点数,它也会显示 `0.3`
#### 总结
我有点怀疑是否有人能耐心完成以上所有些算术,但它写出来对我很有帮助,所以我还是发表了这篇文章,希望它能有所帮助。
--------------------------------------------------------------------------------
via: https://jvns.ca/blog/2023/02/08/why-does-0-1-plus-0-2-equal-0-30000000000000004/
作者:[Julia Evans][a]
选题:[lkxed][b]
译者:[MjSeven](https://github.com/MjSeven)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://jvns.ca/
[b]: https://github.com/lkxed/
[1]: https://legacy.cs.indiana.edu/~dyb/pubs/FP-Printing-PLDI96.pdf
[2]: https://lists.nongnu.org/archive/html/gcl-devel/2012-10/pdfkieTlklRzN.pdf
[3]: https://replit.com/languages/php_cli