TranslateProject/translated/tech/20140523 Tail Calls Optimization and ES6.md

173 lines
9.0 KiB
Markdown
Raw Normal View History

2018-01-25 13:50:49 +08:00
#[尾调用,优化,和 ES6][1]
在探秘“栈”的倒数第二篇文章中,我们提到了**尾调用**、编译优化、以及新发布的 JavaScript 上*特有的*尾调用。
当一个函数 F 调用另一个函数作为它的结束动作时,就发生了一个**尾调用**。在那个时间点,函数 F 绝对不会有多余的工作:函数 F 将“球”传给被它调用的任意函数之后,它自己就“消失”了。这就是关键点,因为它打开了尾调用优化的“可能之门”:我们可以简单地重用函数 F 的栈帧,而不是为函数调用 [创建一个新的栈帧][6],因此节省了栈空间并且避免了新建一个栈帧所需要的工作量。下面是一个用 C 写的简单示例,然后使用 [mild 优化][7] 来编译它的结果:
简单的尾调用 [下载][2]
```
int add5(int a)
{
return a + 5;
}
int add10(int a)
{
int b = add5(a); // not tail
return add5(b); // tail
}
int add5AndTriple(int a){
int b = add5(a); // not tail
return 3 * add5(a); // not tail, doing work after the call
}
int finicky(int a){
if (a > 10){
return add5AndTriple(a); // tail
}
if (a > 5){
int b = add5(a); // not tail
return finicky(b); // tail
}
return add10(a); // tail
}
```
在编译器的输出中,在预期会有一个 [调用][9] 的地方,你可以看到一个 [跳转][8] 指令,一般情况下你可以发现尾调用优化(以下简称 TCO。在运行时中TCO 将会引起调用栈的减少。
一个通常认为的错误观念是,尾调用必须要 [递归][10]。实际上并不是这样的:一个尾调用可以被递归,比如在上面的 `finicky()` 中,但是,并不是必须要使用递归的。在调用点只要函数 F 完成它的调用,我们将得到一个单独的尾调用。是否能够进行优化这是一个另外的问题,它取决于你的编程环境。
“是的,它总是可以!”,这是我们所希望的最佳答案,它是在这个结构下这个案例最好的结果,就像是,在 [SICP][11](顺便说一声,如果你的程序不像“一个魔法师使用你的咒语召唤你的电脑精灵”那般有效,建议你读一下那本书)上所讨论的那样。它是 [Lua][12] 的案例。而更重要的是,它是下一个版本的 JavaScript —— ES6 的案例,这个规范定义了[尾的位置][13],并且明确了优化所需要的几个条件,比如,[严格模式][14]。当一个编程语言保证可用 TCO 时,它将支持特有的尾调用。
现在,我们中的一些人不能抛开那些 C 的习惯心脏出血等等而答案是一个更复杂的“有时候sometimes它将我们带进了编译优化的领域。我们看一下上面的那个 [简单示例][15];把我们 [上篇文章][16] 的阶乘程序重新拿出来:
递归阶乘 [下载][3]
```
#include <stdio.h>
int factorial(int n)
{
int previous = 0xdeadbeef;
if (n == 0 || n == 1) {
return 1;
}
previous = factorial(n-1);
return n * previous;
}
int main(int argc)
{
int answer = factorial(5);
printf("%d\n", answer);
}
```
像第 11 行那样的,是尾调用吗?答案是:“不是”,因为它被后面的 n 相乘了。但是如果你不去优化它GCC 使用 [O2 优化][18] 的 [结果][17] 会让你震惊:它不仅将阶乘转换为一个 [无递归循环][19],而且 `factorial(5)` 调用被消除了,以一个 120 (5! == 120) 的 [编译时常数][20]来替换。这就是调试优化代码有时会很难的原因。好的方面是,如果你调用这个函数,它将使用一个单个的栈帧,而不会去考虑 n 的初始值。编译算法是非常有趣的,如果你对它感兴趣,我建议你去阅读 [构建一个优化编译器][21] 和 [ACDI][22]。
但是,这里**没有**做尾调用优化时到底发生了什么通过分析函数的功能和无需优化的递归发现GCC 比我们更聪明因为一开始就没有使用尾调用。由于过于简单以及很确定的操作这个任务变得很简单。我们给它增加一些可以引起混乱的东西比如getpid()),我们给 GCC 增加难度:
递归 PID 阶乘 [下载][4]
```
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int pidFactorial(int n)
{
if (1 == n) {
return getpid(); // tail
}
return n * pidFactorial(n-1) * getpid(); // not tail
}
int main(int argc)
{
int answer = pidFactorial(5);
printf("%d\n", answer);
}
```
优化它unix 精灵!现在,我们有了一个常规的 [递归调用][23] 并且这个函数分配 O(n) 栈帧来完成工作。GCC 在递归的基础上仍然 [为 getpid 使用了 TCO][24]。如果我们现在希望让这个函数尾调用递归,我需要稍微变一下:
tailPidFactorial.c [下载][5]
```
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int tailPidFactorial(int n, int acc)
{
if (1 == n) {
return acc * getpid(); // not tail
}
acc = (acc * getpid() * n);
return tailPidFactorial(n-1, acc); // tail
}
int main(int argc)
{
int answer = tailPidFactorial(5, 1);
printf("%d\n", answer);
}
```
现在,结果的累加是 [一个循环][25],并且我们获得了真实的 TCO。但是在你庆祝之前我们能说一下关于在 C 中的一般案例吗?不幸的是,虽然优秀的 C 编译器在大多数情况下都可以实现 TCO但是在一些情况下它们仍然做不到。例如正如我们在 [函数开端][26] 中所看到的那样,函数调用者在使用一个标准的 C 调用规则调用一个函数之后,它要负责去清理栈。因此,如果函数 F 带了两个参数,它只能使 TCO 调用的函数使用两个或者更少的参数。这是 TCO 的众多限制之一。Mark Probst 写了一篇非常好的论文,他们讨论了 [在 C 中正确使用尾递归][27],在这篇论文中他们讨论了这些属于 C 栈行为的问题。他也演示一些 [疯狂的、很酷的欺骗方法][28]。
“有时候” 对于任何一种关系来说都是不坚定的,因此,在 C 中你不能依赖 TCO。它是一个在某些地方可以或者某些地方不可以的离散型优化而不是像特有的尾调用一样的编程语言的特性在实践中可以使用编译器来优化绝大部分的案例。但是如果你想必须要实现 TCO比如将架构编译转换进 C你将会 [很痛苦][29]。
因为 JavaScript 现在是非常流行的转换对象,特有的尾调用在那里尤其重要。因此,从 kudos 到 ES6 的同时,还提供了许多其它的重大改进。它就像 JS 程序员的圣诞节一样。
这就是尾调用和编译优化的简短结论。感谢你的阅读,下次再见!
--------------------------------------------------------------------------------
via:https://manybutfinite.com/post/tail-calls-optimization-es6/
作者:[Gustavo Duarte][a]
译者:[qhwdw](https://github.com/qhwdw)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:http://duartes.org/gustavo/blog/about/
[1]:https://manybutfinite.com/post/tail-calls-optimization-es6/
[2]:https://manybutfinite.com/code/x86-stack/tail.c
[3]:https://manybutfinite.com/code/x86-stack/factorial.c
[4]:https://manybutfinite.com/code/x86-stack/pidFactorial.c
[5]:https://manybutfinite.com/code/x86-stack/tailPidFactorial.c
[6]:https://manybutfinite.com/post/journey-to-the-stack
[7]:https://github.com/gduarte/blog/blob/master/code/x86-stack/asm-tco.sh
[8]:https://github.com/gduarte/blog/blob/master/code/x86-stack/tail-tco.s#L27
[9]:https://github.com/gduarte/blog/blob/master/code/x86-stack/tail.s#L37-L39
[10]:https://manybutfinite.com/post/recursion/
[11]:http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html
[12]:http://www.lua.org/pil/6.3.html
[13]:https://people.mozilla.org/~jorendorff/es6-draft.html#sec-tail-position-calls
[14]:https://people.mozilla.org/~jorendorff/es6-draft.html#sec-strict-mode-code
[15]:https://github.com/gduarte/blog/blob/master/code/x86-stack/tail.c
[16]:https://manybutfinite.com/post/recursion/
[17]:https://github.com/gduarte/blog/blob/master/code/x86-stack/factorial-o2.s
[18]:https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
[19]:https://github.com/gduarte/blog/blob/master/code/x86-stack/factorial-o2.s#L16-L19
[20]:https://github.com/gduarte/blog/blob/master/code/x86-stack/factorial-o2.s#L38
[21]:http://www.amazon.com/Building-Optimizing-Compiler-Bob-Morgan-ebook/dp/B008COCE9G/
[22]:http://www.amazon.com/Advanced-Compiler-Design-Implementation-Muchnick-ebook/dp/B003VM7GGK/
[23]:https://github.com/gduarte/blog/blob/master/code/x86-stack/pidFactorial-o2.s#L20
[24]:https://github.com/gduarte/blog/blob/master/code/x86-stack/pidFactorial-o2.s#L43
[25]:https://github.com/gduarte/blog/blob/master/code/x86-stack/tailPidFactorial-o2.s#L22-L27
[26]:https://manybutfinite.com/post/epilogues-canaries-buffer-overflows/
[27]:http://www.complang.tuwien.ac.at/schani/diplarb.ps
[28]:http://www.complang.tuwien.ac.at/schani/jugglevids/index.html
[29]:http://en.wikipedia.org/wiki/Tail_call#Through_trampolining