2021-05-19 08:46:07 +08:00
|
|
|
|
[#]: subject: (3 Python 3.2 features that are still relevant today)
|
|
|
|
|
[#]: via: (https://opensource.com/article/21/5/python-32)
|
|
|
|
|
[#]: author: (Moshe Zadka https://opensource.com/users/moshez)
|
|
|
|
|
[#]: collector: (lujun9972)
|
|
|
|
|
[#]: translator: (geekpi)
|
2021-05-28 20:20:44 +08:00
|
|
|
|
[#]: reviewer: (wxy)
|
2021-05-28 20:21:28 +08:00
|
|
|
|
[#]: publisher: (wxy)
|
|
|
|
|
[#]: url: (https://linux.cn/article-13435-1.html)
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
2021-05-28 20:20:44 +08:00
|
|
|
|
3 个到今天仍然有用的 Python 3.2 特性
|
2021-05-19 08:46:07 +08:00
|
|
|
|
======
|
|
|
|
|
|
2021-05-28 20:20:44 +08:00
|
|
|
|
> 探索一些未被充分利用但仍然有用的 Python 特性。
|
|
|
|
|
|
|
|
|
|
![](https://img.linux.net.cn/data/attachment/album/202105/28/202023pz86mg88r18o6e22.jpg)
|
|
|
|
|
|
|
|
|
|
这是Python 3.x 首发特性系列文章中的第三篇。其中一些 Python 版本已经推出了一段时间。例如,Python 3.2 是在 2011 年首次发布的,但其中引入的一些很酷、很有用的特性仍然没有被使用。下面是其中的三个。
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
|
|
|
|
### argparse 子命令
|
|
|
|
|
|
|
|
|
|
`argparse` 模块首次出现在 Python 3.2 中。有许多用于命令行解析的第三方模块。但是内置的 `argparse` 模块比许多人认为的要强大。
|
|
|
|
|
|
2021-05-28 20:20:44 +08:00
|
|
|
|
要记录所有的 `argparse` 的特性,那需要专门写系列文章。下面是一个例子,说明如何用 `argparse` 做子命令。
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
|
|
|
|
想象一下,一个命令有两个子命令:`negate`,需要一个参数,`multiply`,需要两个参数:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
$ computebot negate 5
|
|
|
|
|
-5
|
|
|
|
|
$ computebot multiply 2 3
|
|
|
|
|
6
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
2021-05-19 08:46:07 +08:00
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
subparsers = parser.add_subparsers()
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
`add_subparsers()` 方法创建一个对象,你可以向其添加子命令。唯一需要记住的技巧是,你需要添加通过 `set_defaults()` 调用的子命令:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
negate = subparsers.add_parser("negate")
|
|
|
|
|
negate.set_defaults(subcommand="negate")
|
|
|
|
|
negate.add_argument("number", type=float)
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
2021-05-19 08:46:07 +08:00
|
|
|
|
multiply = subparsers.add_parser("multiply")
|
|
|
|
|
multiply.set_defaults(subcommand="multiply")
|
|
|
|
|
multiply.add_argument("number1", type=float)
|
|
|
|
|
multiply.add_argument("number2", type=float)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
我最喜欢的一个 `argparse` 功能是,因为它把解析和运行分开,测试解析逻辑特别令人愉快。
|
|
|
|
|
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
|
|
|
|
parser.parse_args(["negate", "5"])
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
Namespace(number=5.0, subcommand='negate')
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
parser.parse_args(["multiply", "2", "3"])
|
|
|
|
|
```
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
|
|
|
|
```
|
2021-05-28 20:20:44 +08:00
|
|
|
|
Namespace(number1=2.0, number2=3.0, subcommand='multiply')
|
2021-05-19 08:46:07 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### contextlib.contextmanager
|
|
|
|
|
|
2021-05-28 20:20:44 +08:00
|
|
|
|
上下文是 Python 中一个强大的工具。虽然很多人 _使用_ 它们,但编写一个新的上下文常常看起来像一门黑暗艺术。有了 `contextmanager` 装饰器,你所需要的只是一个一次性的生成器。
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
|
|
|
|
编写一个打印出做某事所需时间的上下文,就像这样简单:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
import contextlib, timeit
|
|
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
|
def timer():
|
|
|
|
|
before = timeit.default_timer()
|
|
|
|
|
try:
|
|
|
|
|
yield
|
|
|
|
|
finally:
|
|
|
|
|
after = timeit.default_timer()
|
|
|
|
|
print("took", after - before)
|
|
|
|
|
```
|
|
|
|
|
你可以这样使用:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
import time
|
|
|
|
|
|
|
|
|
|
with timer():
|
|
|
|
|
time.sleep(10.5)
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
|
|
|
|
took 10.511025413870811`
|
2021-05-19 08:46:07 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### functools.lru_cache
|
|
|
|
|
|
2021-05-28 20:20:44 +08:00
|
|
|
|
有时,在内存中缓存一个函数的结果是有意义的。例如,想象一下经典的问题:“有多少种方法可以用 25 美分、1 美分、2 美分和 3 美分可以来换取 1 美元?”
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
|
|
|
|
这个问题的代码可以说是非常简单:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
def change_for_a_dollar():
|
|
|
|
|
def change_for(amount, coins):
|
|
|
|
|
if amount == 0:
|
|
|
|
|
return 1
|
|
|
|
|
if amount < 0 or len(coins) == 0:
|
|
|
|
|
return 0
|
|
|
|
|
some_coin = next(iter(coins))
|
|
|
|
|
return (
|
|
|
|
|
change_for(amount, coins - set([some_coin]))
|
|
|
|
|
+
|
|
|
|
|
change_for(amount - some_coin, coins)
|
|
|
|
|
)
|
|
|
|
|
return change_for(100, frozenset([25, 10, 5, 1]))
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
在我的电脑上,这需要 13ms 左右:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
with timer():
|
|
|
|
|
change_for_a_dollar()
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
|
|
|
|
took 0.013737603090703487`
|
2021-05-19 08:46:07 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
事实证明,当你计算有多少种方法可以做一些事情,比如用 50 美分找钱,你会重复使用相同的硬币。你可以使用 `lru_cache` 来避免重复计算。
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
import functools
|
|
|
|
|
|
|
|
|
|
def change_for_a_dollar():
|
|
|
|
|
@functools.lru_cache
|
|
|
|
|
def change_for(amount, coins):
|
|
|
|
|
if amount == 0:
|
|
|
|
|
return 1
|
|
|
|
|
if amount < 0 or len(coins) == 0:
|
|
|
|
|
return 0
|
|
|
|
|
some_coin = next(iter(coins))
|
|
|
|
|
return (
|
|
|
|
|
change_for(amount, coins - set([some_coin]))
|
|
|
|
|
+
|
|
|
|
|
change_for(amount - some_coin, coins)
|
|
|
|
|
)
|
|
|
|
|
return change_for(100, frozenset([25, 10, 5, 1]))
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
2021-05-19 08:46:07 +08:00
|
|
|
|
with timer():
|
|
|
|
|
change_for_a_dollar()
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
2021-05-28 20:20:44 +08:00
|
|
|
|
```
|
|
|
|
|
took 0.004180959425866604`
|
2021-05-19 08:46:07 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
一行的代价是三倍的改进。不错。
|
|
|
|
|
|
|
|
|
|
### 欢迎来到 2011 年
|
|
|
|
|
|
|
|
|
|
尽管 Python 3.2 是在 10 年前发布的,但它的许多特性仍然很酷,而且没有得到充分利用。如果你还没使用,那么将他们添加到你的工具箱中。
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
via: https://opensource.com/article/21/5/python-32
|
|
|
|
|
|
|
|
|
|
作者:[Moshe Zadka][a]
|
|
|
|
|
选题:[lujun9972][b]
|
|
|
|
|
译者:[geekpi](https://github.com/geekpi)
|
2021-05-28 20:20:44 +08:00
|
|
|
|
校对:[wxy](https://github.com/wxy)
|
2021-05-19 08:46:07 +08:00
|
|
|
|
|
|
|
|
|
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
|
|
|
|
|
|
|
|
|
[a]: https://opensource.com/users/moshez
|
|
|
|
|
[b]: https://github.com/lujun9972
|
|
|
|
|
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/lenovo-thinkpad-laptop-concentration-focus-windows-office.png?itok=-8E2ihcF (Woman using laptop concentrating)
|