Merge pull request #15 from FrankHB/patch-2

修复第 4 集文本
This commit is contained in:
Cheng Zheng 2020-04-23 13:30:43 +08:00 committed by GitHub
commit ff7e06f906
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 34 additions and 34 deletions

View File

@ -1826,7 +1826,7 @@ If you've got 10 bytes, it means you've really got 80 bits.
如果有 10 个字节,意味着有 80 位
You've heard of kilobytes, megabytes, gigabytes and so on.
你听过 千字节(kb兆字节mb千兆字节gb
你听过 千字节(KB兆字节MB千兆字节GB等等
These prefixes denote different scales of data.
不同前缀代表不同数量级
@ -1867,8 +1867,8 @@ but we should acknowledge it isn't the only correct definition.
You've probably also heard the term 32-bit or 64-bit computers
你可能听过 32 位 或 64 位计算机
C you're almost certainly using one right now.
你现在用的电脑肯定是其中一种
you're almost certainly using one right now.
你现在用的电脑几乎肯定是其中一种
What this means is that they operate in chunks of 32 or 64 bits.
意思是一块块处理数据,每块是 32 位或 64 位
@ -1892,7 +1892,7 @@ because computers today use 32-bit color graphics
因为如今都用 32 位颜色
Of course, not everything is a positive number
当然,不是所有数都是正数
当然,不是所有数都是正数
- like my bank account in college.
比如我上大学时的银行账户 T_T
@ -1907,13 +1907,13 @@ Most computers use the first bit for the sign:
1 是负0 是正
and then use the remaining 31 bits for the number itself.
用剩下 31 位来表示数字
用剩下 31 位来表示符号外的数值
That gives us a range of roughly plus or minus two billion.
能表示的数字范围是 正 20 亿到负 20 亿
能表示的数的范围大约是正 20 亿到负 20 亿
While this is a pretty big range of numbers, it's not enough for many tasks.
虽然是很大的数,但有时还不够用
虽然是很大的数,但许多情况下还不够用
There are 7 billion people on the earth, and the US national debt is almost 20 trillion dollars after all.
全球有 70 亿人口,美国国债近 20 万亿美元
@ -1922,7 +1922,7 @@ This is why 64-bit numbers are useful.
所以 64 位数很有用
The largest value a 64-bit number can represent is around 9.2 quintillion!
64 位能表达最大数是 9.2x10
64 位能表达最大数大约是 9.2×10 ^ 18
That's a lot of possible numbers and will hopefully stay above the US national debt for a while!
希望美国国债在一段时间内不会超过这个数!
@ -1934,7 +1934,7 @@ computers must label locations in their memory,
计算机必须给内存中每一个位置,做一个 "标记"
known as addresses, in order to store and retrieve values.
这个标记叫 "址", 目的是为了方便存取数据
这个标记叫 "址", 目的是为了方便存取数据
As computer memory has grown to gigabytes and terabytes - that's trillions of bytes
如今硬盘已经增长到 GB 和 TB上万亿个字节
@ -1973,16 +1973,16 @@ For example, 625.9 can be written as 0.6259 x 10^3.
例如625.9 可以写成 0.6259×10 ^ 3
There are two important numbers here: the .6259 is called the significand.
这里有两个重要数.6259 叫 "有效位数" , 3 是指数
这里有两个重要数:.6259 叫 "有效位数" , 3 是指数
And 3 is the exponent.
这里有两个重要数.6259 叫 "有效位数" , 3 是指数
这里有两个重要数:.6259 叫 "有效位数" , 3 是指数
In a 32-bit floating point number,
在 32 位浮点数中
the first bit is used for the sign of the number -- positive or negative.
第 1 位表示数的正负
第 1 位表示数的符号——
The next 8 bits are used to store the exponent
接下来 8 位存指数
@ -1991,16 +1991,16 @@ and the remaining 23 bits are used to store the significand.
剩下 23 位存有效位数
Ok, we've talked a lot about numbers, but your name is probably composed of letters,
好了,聊够数了,但你的名字是字母组成的
好了,聊够数了,但你的名字是字母组成的
so it's really useful for computers to also have a way to represent text.
所以我们也要表示文字
However, rather than have a special form of storage for letters,
与其用特殊方式来表示字母 \N 计算机可以用数表示字母
与其用特殊方式来表示字母 \N 计算机可以用数表示字母
computers simply use numbers to represent letters.
与其用特殊方式来表示字母 \N 计算机可以用数表示字母
与其用特殊方式来表示字母 \N 计算机可以用数表示字母
The most straightforward approach might be to simply number the letters of the alphabet:
最直接的方法是给字母编号:
@ -2063,7 +2063,7 @@ and critically, allowed different computers built by different companies to exch
让不同公司制作的计算机,能互相交换数据
This ability to universally exchange information is called "interoperability".
这种通用交换信息的能力叫 "互性"
这种通用交换信息的能力叫 "互操作性"
However, it did have a major limitation: it was really only designed for English.
但有个限制:它是为英语设计的
@ -2117,7 +2117,7 @@ In response, each country invented multi-byte encoding schemes,
为了解决这个问题,每个国家都发明了多字节编码方案
all of which were mutually incompatible.
相互兼容
但相互兼容
The Japanese were so familiar with this encoding problem that they had a special name for it:
日本人总是碰到编码问题,以至于专门有词来称呼:

View File

@ -197,7 +197,7 @@ If you've got 10 bytes, it means you've really got 80 bits.
如果有 10 个字节,意味着有 80 位
You've heard of kilobytes, megabytes, gigabytes and so on.
你听过 千字节(kb兆字节mb千兆字节gb
你听过 千字节(KB兆字节MB千兆字节GB等等
These prefixes denote different scales of data.
不同前缀代表不同数量级
@ -238,8 +238,8 @@ but we should acknowledge it isn't the only correct definition.
You've probably also heard the term 32-bit or 64-bit computers
你可能听过 32 位 或 64 位计算机
C you're almost certainly using one right now.
你现在用的电脑肯定是其中一种
you're almost certainly using one right now.
你现在用的电脑几乎肯定是其中一种
What this means is that they operate in chunks of 32 or 64 bits.
意思是一块块处理数据,每块是 32 位或 64 位
@ -263,7 +263,7 @@ because computers today use 32-bit color graphics
因为如今都用 32 位颜色
Of course, not everything is a positive number
当然,不是所有数都是正数
当然,不是所有数都是正数
- like my bank account in college.
比如我上大学时的银行账户 T_T
@ -278,13 +278,13 @@ Most computers use the first bit for the sign:
1 是负0 是正
and then use the remaining 31 bits for the number itself.
用剩下 31 位来表示数字
用剩下 31 位来表示符号外的数值
That gives us a range of roughly plus or minus two billion.
能表示的数字范围是 正 20 亿到负 20 亿
能表示的数的范围大约是正 20 亿到负 20 亿
While this is a pretty big range of numbers, it's not enough for many tasks.
虽然是很大的数,但有时还不够用
虽然是很大的数,但许多情况下还不够用
There are 7 billion people on the earth, and the US national debt is almost 20 trillion dollars after all.
全球有 70 亿人口,美国国债近 20 万亿美元
@ -293,7 +293,7 @@ This is why 64-bit numbers are useful.
所以 64 位数很有用
The largest value a 64-bit number can represent is around 9.2 quintillion!
64 位能表达最大数是 9.2x10
64 位能表达最大数大约是 9.2×10 ^ 18
That's a lot of possible numbers and will hopefully stay above the US national debt for a while!
希望美国国债在一段时间内不会超过这个数!
@ -305,7 +305,7 @@ computers must label locations in their memory,
计算机必须给内存中每一个位置,做一个 "标记"
known as addresses, in order to store and retrieve values.
这个标记叫 "址", 目的是为了方便存取数据
这个标记叫 "址", 目的是为了方便存取数据
As computer memory has grown to gigabytes and terabytes - that's trillions of bytes
如今硬盘已经增长到 GB 和 TB上万亿个字节
@ -344,16 +344,16 @@ For example, 625.9 can be written as 0.6259 x 10^3.
例如625.9 可以写成 0.6259×10 ^ 3
There are two important numbers here: the .6259 is called the significand.
这里有两个重要数.6259 叫 "有效位数" , 3 是指数
这里有两个重要数:.6259 叫 "有效位数" , 3 是指数
And 3 is the exponent.
这里有两个重要数.6259 叫 "有效位数" , 3 是指数
这里有两个重要数:.6259 叫 "有效位数" , 3 是指数
In a 32-bit floating point number,
在 32 位浮点数中
the first bit is used for the sign of the number -- positive or negative.
第 1 位表示数的正负
第 1 位表示数的符号——
The next 8 bits are used to store the exponent
接下来 8 位存指数
@ -362,16 +362,16 @@ and the remaining 23 bits are used to store the significand.
剩下 23 位存有效位数
Ok, we've talked a lot about numbers, but your name is probably composed of letters,
好了,聊够数了,但你的名字是字母组成的
好了,聊够数了,但你的名字是字母组成的
so it's really useful for computers to also have a way to represent text.
所以我们也要表示文字
However, rather than have a special form of storage for letters,
与其用特殊方式来表示字母 \N 计算机可以用数表示字母
与其用特殊方式来表示字母 \N 计算机可以用数表示字母
computers simply use numbers to represent letters.
与其用特殊方式来表示字母 \N 计算机可以用数表示字母
与其用特殊方式来表示字母 \N 计算机可以用数表示字母
The most straightforward approach might be to simply number the letters of the alphabet:
最直接的方法是给字母编号:
@ -434,7 +434,7 @@ and critically, allowed different computers built by different companies to exch
让不同公司制作的计算机,能互相交换数据
This ability to universally exchange information is called "interoperability".
这种通用交换信息的能力叫 "互性"
这种通用交换信息的能力叫 "互操作性"
However, it did have a major limitation: it was really only designed for English.
但有个限制:它是为英语设计的
@ -488,7 +488,7 @@ In response, each country invented multi-byte encoding schemes,
为了解决这个问题,每个国家都发明了多字节编码方案
all of which were mutually incompatible.
相互兼容
但相互兼容
The Japanese were so familiar with this encoding problem that they had a special name for it:
日本人总是碰到编码问题,以至于专门有词来称呼: