

MEAP Edition
Manning Early Access Program

Akka in Action
Version 13

Copyright 2014 Manning Publications

For more information on this and other Manning titles go to

www.manning.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning.com
http://www.manning-sandbox.com/forum.jspa?forumID=835

brief contents

1. Introducing Akka

2. Up and Running

3. Test Driven Development with Actors

4. Fault tolerance

5. Futures

6. Your first distributed Akka App

7. Configuration, Logging and Deployment

8. System structure

9. Routing

10. Message channels

11. Finite State Machines and Agents

12. Working with Transactions

13. Integration

14. Clustering

15. Akka persistence

16. Performance Analysis and Tuning

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

1
In this chapter

An overview of Akka
Actors and Actor Systems
Applicability of Akka

In this first chapter, you will be introduced to the various aspects of Akka, what
it makes possible, and how it differs from existing solutions. Focus will be on how
to take these capabilities and craft powerful concurrent and distributed
applications. Akka is at once revolutionary: breaking from the container tradition,
and yet doing so by employing ideas that have been around for some time: Actor
Systems (if you've never heard of Actors, fear not, we will discuss them at length
in the course of the book). You will learn how Akka simplifies the implementation
of asynchronous and concurrent tasks, and how it also offers an exciting new
solution to distributed fault tolerance. Finally, we will discuss how these concepts,
combined with the Akka runtime, deliver on the promise of apps that are more
reliable and scalable and yet easier to write (and less prone to rewriting).

Too often, developers wait until defects or scaling issues present themselves to
consider these issues. Akka makes it easy to build them in from the first line of
code in the project, or add them to an existing project. These are not corner case,
late-stage requirements: every app has some part that handles request and
processing loads, or runs jobs that have to manage a lot of work. The dominant
approach to these problems has been to graft largely home-grown solutions onto
already written code. Even if you are adding to an existing codebase, the new code

Introducing Akka

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

1

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

will be concurrent, scalable and fault tolerant from its inception. This book will
convince you that Akka's ability to confer these capabilities is so lightweight and
elegant that putting them in the later bin makes no sense.

While Akka is written in Scala, it is usable from both Scala and Java. It's primary
goal is to make the achievement of performance, reliability, and scalability simpler.
This is one of the most exciting aspects of Actors: they allow programmers to just
focus on how to most efficiently implement solutions, not on having to make their
code also manage scaling issues like batching or resource management. Most
solutions, as they grow, are pulled simultaneously on these two axes: having to
expand capacity while still evolving the application's capabilities. Actors let the
programmer just focus on getting the work done; the system provides means
outside the code for scaling it when the demand curve grows (or shifts).

For systems that demand real-time, or near real-time, the dominant model of
having components synchronously depend upon services that are often unavailable
is a showstopper. Facile notions of forking a process or spawning a thread to
handle each request are not tenable long term. While containers deploy thread
pools, once the execute thread calls the corresponding application code, there is
nothing keeping that task from running for as long as it likes, including potentially
waiting on many other system components. With the rise of the cloud, truly
distributed computing is quickly becoming a reality. While this means more
opportunities to rapidly assemble apps that leverage other services, it also means
dependence upon those services make simplistic serial programming impossible in
the face of performance demands.

Let's consider the items on our wish list:

Handle many requests in parallel

Concurrent interaction with services and clients

Responsive asynchronous interaction

An event-driven programming model

With Akka, we can accomplish these things today, as the examples throughout
the book will illustrate. The example in this chapter will provide a cursory look at
how Akka provides for concurrency and fault tolerance. Later, we will tackle the
rest of these items, with a host of examples.

1.1 What is Akka

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

2

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The Akka team refers to their creation as a toolkit rather than a framework.
Frameworks tend to be a mechanism for providing a discrete element of a stack
(e.g. the ui, or the web services layer). Akka provides a set of tools to render any
part of the stack, and to provide the interconnects between them. It does this by a
specific architectural configuration that lets the seeker of a solution interface
simply call methods, rather than worry about enqueueing messages, which is done
seamlessly by the Akka runtime.

Akka is made up of modules that are distributed as JAR files; you use them just
like any other library. Great care has been taken to minimize the dependencies that
are needed in every module. The akka-actor module has no dependencies other
than the standard Scala library and is in fact distributed with Scala since version
2.10. Modules are provided to ease the use of Akka for different parts of the stack:
remoting, clustering, transactions and dataflow concurrency (as we will see later).
There are also modules focused on integration with other systems like the camel
and zeromq module. Figure 1.1 shows the main elements in the Akka stack, and
how client code is shielded from most of the details.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

3

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 1.1 The Akka Stack

Akka also provides a runtime. The core of the runtime is the basic actor
services and a flexible means of configuring the other modules that you would like
to use. There is a microkernel called Play-mini available which you can use to
deploy your applications. You will be shocked when you see how much you can
do, and how well it can scale, from so little code, with a runtime that has such a
tiny footprint.

So what is a typical Akka application made up of? Well, the answer is, Actors.
Akka is based on the Actor programming model, which we will discuss in great
detail in this book. The history of Actors goes back forty years. It emerged as a
way to get scores of machines/CPUs to work together to solve large problems. But

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

4

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

it was also inspired by some of the difficulties encountered in early object
languages, growing into the notion of a 'process calculus' that has been embraced
by functional languages like Erlang and Fantom. But again, Akka deploys both the
language side of the Actor model, and the runtime. In the next section, we will start
our exploration of Akka by taking a look at how the Actor programming model
makes possible a simpler means of concurrency.

As per the mission of this press, we believe strongly that when you see the
Akka versions of some of the common solutions to these problems, you will be
convinced of both their superiority, and the much greater ease and elegance
afforded the developer in accomplishing them. In the next section, we will start to
see the specific elements of Akka that make all this possible.

In this section, we are going to go over an example application that needs to handle
concurrent requests. For an application to be truly concurrent, the processing of the
requests must also execute simultaneously, with the executors collaborating to
complete the task at hand. Some experience with writing concurrent code using
threads in the JVM, and some of the hard problems that come with that territory, is
assumed. So here's to hoping you find it as hard as we do and would love a simpler
model than threads and locks for concurrency, and as an added bonus, a lot less
code to write. First, we'll consider concurrency at the conceptual level, then look at
the two ways (shared mutable state/message passing (Akka)) to solve the problem
of selling tickets.

In this example, customers buy tickets to Events from TicketingAgents. We will
look at this example in more depth later in the book, for now, we use it to illustrate
the two approaches to concurrency: the traditional one in which the developer is
responsible for using threads to distribute the load, and the message-based one,
where messages are sent and processing involves simply working through a queue
of them. One other difference between the models: the original one employs shared
mutable state, the message one, immutability.

What is immutability? As a quick refresher, if something is immutable, it
means it is given its state at construction and cannot be changed after. The last 20
years of programming have seen increasing emphasis on the importance of
immutability (in the C++ and Java communities). This is a key aspect of the
message-oriented model; by having collaborators only interact with immutable

1.1.1 Simpler Concurrency

THE EXAMPLE PROBLEM: SELLING TICKETS

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

5

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

representations, we forego the primary source of difficulties: multiple parties
transforming the same objects. This example illustrates that sometimes this means
a bit more work in the initial implementation, but weighed against the decrease in
defects and the scaling benefits, it's a tiny price to pay (and the result is a cleaner
implementation that makes what the code is actually doing much clearer, hence
more readable and maintainable). Finally, it also makes the code easier to verify
because unit tests rarely account for what happens when state changes are the work
of multiple parties. Figure 1.2 shows the most basic flow of the ticketing selling
application: what happens when a Customer presents who wishes to purchase a
ticket for a given Event.

Figure 1.2 Buying Tickets

If you think about the problem of selling tickets to Customers, it seems like a
good candidate for concurrency, because the demand side of the model could
potentially be overwhelming: what would happen if a million people tried to
purchase at the same time? In a thread-based model, the most common simple
implementation: forking or spawning a thread for each request, would lead to
immediate catastrophic failure. Even a thread pool is going to run the risk of
failure, because the requests are probably coming over lines that have timeouts, so
if the execute threads are busy for too long, the client will fail before even being
serviced. Furthermore, the presumption in the first model that most programmers
operate under: that another thread will mean a linear improvement in capacity, is
often wrong because those threads are going to contend with each other for the
shared resources they are jointly transforming. The combination of messages, and
no shared mutable state, will relieve these ills.

Before looking at the two approaches, let's consider the domain model briefly.
Clearly, we would have a Venue, which has Seats and schedules Events. For each
Seat we will print a Ticket that can be sold to an Customer by a TicketingAgent.
You can probably anticipate where the problems are going to come from: each

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

6

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

request for a ticket is going to require us to find one, see if the Customer wants it,
and if they do, change that Ticket's state from Available to Sold and then print it
out for the Customer. So if our plan for scaling this is to just have more
TicketingAgents, clearly giving them all orderly access to the pool of available
tickets (under all conditions) is going to be the critical factor in a successful
outcome. (What happens if we fail? In the next section, we will discuss the other
issue that haunts such pursuits: fault tolerance, discussion of concurrency will
prompt many thoughts about faulting strategies.) Figure 1.3 shows how we will
have to accommodate these constraints, by having multiple TicketingAgents to
deal with the multitude of Customers that may demand service at any given time.

Figure 1.3 Relationship between Customers, TicketingAgents and the
printing office

We have only one Printing Office, but that does not mean we will fail
catastrophically if it encounters a problem (we will discuss in the next section).
The important point here is that we managed to make it possible to have any
number of TicketingAgents fielding requests from Customers without blocking on
access to the pool of tickets.

As the diagrams show, TicketingAgents must compete with each other for access
to the list of available Tickets. Some of that wait time is going to result in a
Customer waiting while the Tickets of another Customer are being printed, which
makes no sense. This is clearly a case of implementation shortcomings poisoning
domain model sanctity.

There might be a way to optimize this; figure 1.4 shows a modified approach.

OPTION 1: SHARING STATE APPROACH

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

7

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

1.

2.

3.

Figure 1.4 Buying sequence

You can see, we didn't have to go to great lengths to keep the Agents from
blocking each other's access to Tickets, and the result is also a bit clearer than what
we would probably end up with if someone came in later and rewrote the selling
sequence to make it concurrent.

There are three threading pitfalls that can result in catastrophic runtime failure:

thread starvation - when the execute threads are either all busy, or have all become
deadlocked, so there's literally no one to service any new requests, this effectively shuts
down the server (though it probably still looks to an admin like it's up and running).
race conditions - when shared data is being changed by multiple threads while a given
method is executing, it can cause the internal logic to be subverted and produce
unexpected results
deadlock - if two threads start an operation that requires locking of more than one
resource, and they don't acquire those locks in the same order, a deadlock can ensue:
thread 1 locks resource A, thread 2 resource B, then as 2 attempts to lock A and 1 lock B,
we have a deadlock.

Even if you manage to avoid these problems, the process of making sure the
lock based code is optimized ends up being painstaking. Locking is often done too
much or too little; when too many locks are used, nothing really happens at the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

8

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

1.

2.

3.

same time. Difficult bugs can occur when too few locks are used. Getting to the
right balance is hard.

The TicketingAgents have to wait for each other at times, which means that the
customers have to wait longer for their tickets. The TicketingAgents also have to
wait when the printing office is busy adding tickets. Some of these wait times just
feel unnecessary. Why would a customer at one TicketingAgent have to wait for a
customer at another TicketingAgent? This is clearly a case of implementation
shortcomings poisoning domain model sanctity.

Our strategy for making things simpler (with Akka) consists of avoiding the root of
all the ills we just discussed: shared state. Here are the three changes we need to
make:

The Events and the Tickets will only be passed as immutable messages between the
TicketingAgent and the printing office.
Requests of the agents and printing office will be enqueued , without theasynchronously
thread waiting for method completion or even a receipt.
The agents and the printing office, rather than holding references to each other, contain

 where they can send messages for each other. Those messages will beaddresses
temporarily stored in a , to be processed later, one at a time, in the order theymailbox
arrived. (Don't worry, how this 'toolkit' makes this possible, that will be explained later.)

Of course, a new requirement springs from this reconfiguration of
collaborators: TicketingAgents will need to have a way to get more Tickets when
they have sold the ones they have. While that is an additional piece, once we have
done it by simply passing immutable messages, we will not have to worry about
whether our application can withstand drastic (and rapid) increases in demand.
Figure 1.5 shows the TicketingAgent sequence.

OPTION 2: MESSAGE PASSING APPROACH

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

9

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 1.5 TicketingAgent sequence

So how do the TicketingAgent get tickets? Well, the printing office will send
Event messages to the agents. Every Event message will contain a batch of Tickets
and some stats for the Event. There are quite a few ways to send tickets to all the
TicketingAgents, in this case we have chosen to let them relay the messages to
each other, which makes the system more peer-based, and given some simple rules
on when to pass, is a means of scaling we will go into in more detail later. The
TicketingAgents know each others' addresses and send the event message along to
each other as shown in figure 1.6 . (We will see chains many times in the Actor
world, ranging from this simple means of propagating working state, up to a
distributed, actor-based version of the Chain of Responsibility Design Pattern.)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

10

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 1.6 Distributing tickets

The printing office will send an Event message with the next batch of tickets to
the chain of TicketingAgents when needed. The Event message can indicate that
the Event is sold out or out of print. If a TicketingAgent in the chain has leftover
tickets, we've chosen to relay the tickets to other Agents rather than just return
them to the available pool. Another option would be to expire the tickets; each
TicketingAgent is given the ticket, but once a certain amount of time has passed,
what they have is no longer valid and can no longer be sold.

The message passing approach has a couple of benefits. Most importantly, there
are no more locks to manage! Any number of TicketingAgents can sell tickets in
parallel without locking, since they have their own tickets to sell. A

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

11

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

TicketingAgent does not have to wait for a response from the printing office when
it sends a 'More Tickets' message, whenever the printing office is ready it will send
a response. A buffering scheme could also be implemented, where the message for
new tickets is sent once the on hand level has dropped below a certain number
(with the idea that they will arrive before the cache has been emptied).

Even if the printing office were to crash, all agents can continue to sell tickets
until they run out. If a TicketingAgent sends a message to a crashed printing office,
the TicketingAgent does not wait, or crash. Since the agent does not know the
printing office directly, a message to the printing office address could be handled
by some other object, if the message system were to swap out the crashed printing
office for a new one, and give the new printing office the old address (more on this
later).

This is a typical implementation in Akka. The TicketingAgent and the printing
office in the passing example can be implemented with Akka Actors.message
Actors do not share state, can only communicate through immutable messages and
do not talk to each other directly but through actor references, similar to the
addresses we talked about. This approach satisfies the three things we wanted to
change. So why is this simpler than the shared mutable state approach?

We don't need to manage locks. We don't have to think about how to protect the shared
data. Inside an actor we're safe.
We are more protected from deadlocks caused by out of order access by multiple threads,
that cause the system to wait forever, or other problems like race conditions and thread
starvation. Use of Akka precludes most of these problems, relieving us of the burden.
Performance tuning a shared mutable state solution is hard work and error prone and
verification through tests is nearly impossible.

SIDEBAR The Actor Model is not new
The Actor Model is not new at all and has actually been around for quite
a while, the idea was introduced in 1973 by Carl Hewitt, Peter Bishop,
and Richard Steiger. The Erlang language and its OTP middleware
libraries, developed by Ericsson around 1986, supports the Actor Model
and has been used to build massively scalable systems with
requirements for high availability. An example of the success of Erlang
is the AXD301 switch product which achieves a reliability 99.9999999%,
also known as nine nines reliability. The Actor Model implementation in
Akka differs in a couple of details from the Erlang implementation, but
has definitely been heavily influenced by it, and shares a lot of its
concepts.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

12

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

1.

2.

So are there no concurrency primitives like locks used in Akka? Well, ofat all
course there are, it's just that don't have to deal with them . Everythingyou directly
still eventually runs on threads and low level concurrency primitives. Akka uses
the java.util.concurrent library to coordinate message processing and takes great
care to minimize the number of locks used to an absolute bare minimum. It uses
lock free and wait free algorithms where possible, for example compare-and-swap
(CAS) techniques, which are beyond the scope of this book. And because nothing
can be shared between actors, the shared locks that you would normally have
between objects are not present at all. But as we will see later, we can still get into
some trouble if we accidentally share state.

We also saw that in the message passing approach we needed to find a way to
redistribute the tickets. We had to model the application differently, which is what
you would probably expect, no such thing as a free lunch. But the advantage is that
we have traded unknown, perhaps vast amounts of work in scaling and preventing
disasters, for a few amendments to the interactions of the core collaborators, in this
case, simply distributing the load (as tickets to be sold). Later in the book, we will
see that having load accommodations in the domain layer will be beneficial when
we want to scale, as we have already provided a means of spreading the work
around to make use of additional resources.

There are other benefits that stem from the message passing approach that Akka
uses, which we will discuss in the next sections. We have touched on them briefly
already:

Even in this first, simple example, the message passing approach is clearly more fault
tolerant, averting catastrophic failure if one component (no matter how key) fails.
The shared mutable state is always in one place in the example (in one JVM if it is kept
entirely in memory). If you need to scale beyond this constraint, you will have to
(re)distribute the data somehow. Since the message passing style uses addresses, looking
ahead, you can see that if local and remote addresses were interchangeable, scaling out
would be possible without code changes of any kind.

So again, we have paid a small price in terms of more explicit cooperation, but
reaped a clear long-term benefit.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

13

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

We just touched on how quickly and easily we were granted a significant measure
of fault tolerance in our example; let's take a moment to go into that a bit more
here. (Fault tolerance is going to be discussed in more detail in chapter 3.) The
Ticketing Example mentioned that the message passing approach allows the
system to keep functioning even when part of it is waiting forever and not
functioning at all. One reason for this is isolation, the actors do not talk to each
other directly. An actor can never block or wait forever because it sent another
actor a message. Because the message is delivered to a mailbox, the sender is
immediately free to go do other work. Maybe the message will never reach its
intended actor, or maybe it will never get processed, but the sending actor at least
will never fail trying to send a message to an address. The same cannot be said for
objects and calling methods. Once you call a method, you are all-in. Figure 1.7
shows the difference in this regard between actors and objects.

Figure 1.7 Message Passing vs. Function Calling

This isolation also offers another opportunity. What if an actor crashes, and is
replaced by another actor, reachable at the same address? Any message sent to the
address will just reach the new actor, as long as the crashed actor is replaced
properly. The fault is contained in the misbehaving actor and any consequent
message could be handled by a new actor. (For this to work, the erroneous actor
should not be allowed to continue to process messages at an exception. It should
just crash and burn, never to be seen again.) Where frameworks like Spring

1.1.2 Fault Tolerance

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

14

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

leverage that at the container/bean level, Akka brings substitutability and
replaceability to runtime (this is the Actor concept of 'let it crash'): we anticipate
that for whatever reasons, there will be cases of individual handlers failing to carry
out their tasks, and we are prepared to reroute that work to avoid a catastrophic
failure.

Also of note here: this is bidirectional. Even if the failure occurs up the chain,
underlings can carry on until a new supervisor arrives. There is no broken chain,
and most importantly, it is no longer the duty of the developer to find all the ways
that chain might break catastrophically and provide specialized handling for each
case (exceptions are our only tool in the shared mutable state model, and as we'll
shortly see, they are bound to the current VM, and propagation up and down the
callstack). A failed Actor (in this case, the PrintingOffice), can be replaced without
even halting the other collaborators, as shown in figure 1.8 .

Figure 1.8 Replacing a crashed printing office

As we mentioned before, messages are always temporarily stored in a mailbox.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

15

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The message in the mailbox that was processed by the crashed printing office can
be passed to the new printing office (when it's been determined that it was not
handled). The agents don't notice any problem and the system just continues to sell
tickets. This scenario is one example of a fault tolerance strategy that Akka
provides, which is called the Restart strategy. Other strategies that can be used are
Resume, Stop and Escalate. These strategies are explained in more detail in chapter
4. Akka provides a way to select strategies for specific exceptions that can occur in
Actors. Since Akka controls how all messages between Actors are processed and
knows all the addresses of the Actors, it can stop processing messages for an Actor
that throws an exception, check which strategy should be used for the specific
exception and take the required action. (This is kind of a Cool Hand Luke
Universe: the only failures, are failures of communication.)

Fault tolerant does not mean that every possible fault is caught and recovered
from completely. A fault tolerant system is a system that can at least contain and
isolate faults in specific parts of the system, averting a full system crash. The goal
is to keep the system running, as was achieved by restarting the printing office.
Different faults require different corrective strategies. Some faults are solved by
restarting a part of the system, other faults might not be solvable at the point of
detection and may need to be handled at a higher level, as part of a larger
subsystem. We'll see how Akka provides for such cases with its notion of
Supervision later in the book.

As you would probably expect, replacing malfunctioning objects in a shared
mutable state approach is almost impossible to do, unless you are prepared to build
a framework of your own to support it. And this is not limited to malfunctioning
objects, what if you just wanted to replace the behavior of a particular object? (As
we will see later, Akka also provides functionality to hot swap the behavior of an
Actor.) Since you do not have control over how methods are called, nor possess the
ability to suspend a method and redirect it to another new object, the flexibility that
is offered by the message passing approach is unmatched.

Without going into a lot of detail, let's look briefly at exception handling.
Exceptions in standard, non-concurrent code are thrown up the call hierarchy. An
object needs to handle the exception, or rethrow it. Whenever an exception occurs
you need to stop the regular business that you are doing and fallback to error
handling, to immediately continue where you left off after the error has been dealt
with. Since this is quite hard, most developers prefer to just throw an error all the
way up the stack, leaving it up for some type of framework to handle, aborting the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

16

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

process at the first sign of an error. In Java, the situation is made murkier by the
fact that there are two types of exceptions (checked and runtime), and confusion
about the applicability of each has made it more likely that the default impulse is
just going to be to punt and hope someone else handles it.

And that's just talking about non-concurrent exception handling. Exceptions are
almost impossible to share between threads out of the box, unless you are prepared
to build a lot of infrastructure to handle this. Exceptions cannot automatically be
passed outside of the thread group that the thread is part of, which means you
would have to find some other way to communicate exceptions amongst threads in
different thread groups. In most cases if a thread encounters some kind of
exception the choice is made to ignore the error and continue, or stop execution
completely, which is the simplest solution. You might find some evidence in a log
that a thread crashed or stopped, but communicating this back to other parts of the
system is not easy. Restarting the thread and providing the state it needs to function
is very hard to do manually. Things become an order of magnitude harder when
these threads are distributed across several machines. Akka provides one model for
handling errors, for both actors on one machine, as scaled out across many, as we
will see later in chapter 3. Hopefully, you can see in the midst of these contrasted
approaches to core problems, that Akka is not just a solution to concurrency issues;
the fault tolerance advantages can, in many cases, be just as great a lure.

In this section we are going to briefly look at how a message passing style provides
some benefits for scaling up and out. In our Ticketing example, scaling up would
mean getting more TicketingAgents running on our one server, scaling out would
be bringing up TicketingAgents on a number of machines.

Without explicitly stating it, so far we have looked at the agents and printing office
example on one machine, and one JVM. So how do we scale out to many
machines?

The message passing style uses addresses to communicate, so all we need to
change is how the addresses are linked to actors. If the toolkit takes care of the fact
that an address can be local or remote, we can scale the solution just by configuring
how the addresses are resolved. Figure 1.9 shows how the Akka toolkit solves this
for us.

1.1.3 Scale Up and Out

SCALE OUT

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

17

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 1.9 Transparent Remote Actors (through Proxies)

Akka provides what it calls (which we will discuss in chapter 5)Remote Actors
that enable the transparency we seek. Akka passes messages for a remote actor on
to a remote machine where the actor resides, and passes the result back across the
network. The TicketingAgent does not know that it just talked to a remote printing
office. The solution can stay almost the same as the in-memory example. The only
thing that has to change is how the reference to remote actors is looked up, which
can be achieved solely through configuration, as we will see later. The code stays
exactly the same. Which means that we can often transition from scaling up to
scaling out without having to change a single line of code.

The flexibility of resolving an address is heavily used in Akka, as we will show
throughout this book. Remote actors, clustering and even the test toolkit use this
flexibility.

The shared mutable state example uses locks which only work within one JVM.
So how easy is it to scale out and make this example work across many machines?
There are no features in the JVM that we can directly use to achieve this. The most
common solution is to push all of the state out of the JVM and put it all in a
database.

If we follow the database path, the code has to be changed completely. The
biggest threat is that under the demands of having to exercise more control, the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

18

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

data store will become preeminent, and the middle tier will collapse: the classes
will just be DTOs or stateless fronts that have no real behavior. The really dark
side of this is that then when more sophisticated behavior is required, the database
will be asked to handle that as well, which is a disaster. Also, the transparency of
our system, how easily you can trace the flow, turns instead into patches of
behavior intertwined with elaborate control mechanisms. In some architectures,
message queues and web services will appear to prevent this, but the result will be
a model that has all the same advantages of Akka, except rendered by pulling them
up into the application layer where the code will serve multiple masters: the
business requirements and the communication mechanisms. Akka saves us from
these painful eventualities by building on messages instead of shared mutable state,
and giving us transparent remoting to allow us to scale both up and out from one
codebase.

So what if we want to just increase the performance on one machine and scale up?
Imagine that we upgrade a machine's number of CPU cores. In the shared mutable
state example we could increase the number of threads that the agents run on. But
as we have seen, locks result in contention, which will mean the number of threads
doing work at any one time is often less than the total number, as some will have to
wait on each other to finish. Sharing as little as possible means locking as little as
possible, which is the goal of the message passing approach.

Using the message passing approach, the agents and printing office can run on
fewer threads and still outperform the locking version, as long as the toolkit
optimizes the processing and dispatching of messages. Every thread has a stack to
store runtime data. The size of the stack differs per operating system, for instance
on the linux x64 platform it is normally 256kB. The stack size is one of the factors
that limits the number of threads that run at the same time on a server. Around
4096 threads can fit in 1GB of memory on the linux x64 platform.

Actors run on an abstraction which is called a dispatcher. The dispatcher takes
care of which threading model is used and processes the mailboxes. Similar to the
way thread pools work, but with the all-important messaging scheme on top; the
pool just handles task scheduling, Akka's dispatcher/mailbox combo handles that
and messaging. Best part is we can map a dispatch strategy through the
configuration layer, meaning we can change it without changing code. In later
chapters we will see that Akka's ease of configuration makes performance tuning a
breeze.

SCALE UP

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

19

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

1.
2.
3.

Actors are lightweight because they run on top of dispatchers, the actors are not
necessarily directly proportional to the number of threads. Akka Actors take a lot
less space than threads, around 2.7 million actors can fit in 1GB of memory. A big
difference compared to 4096 threads, which means that you can create different
types of actors more freely than you would when using threads directly. There are
different types of dispatchers to choose from which can be tuned to specific needs.
It's possible to share a dispatcher between actors, or use different ones for different
actors. Being able to configure and tune the dispatchers and the mailboxes that are
used throughout the application gives a lot of flexibility when performance tuning.

Now that we've learned the benefits of a message passing approach to
concurrency, fault tolerance, and scaling, it's time to look at some specifics: the
concrete components that Akka uses and how these work together to provide the
message passing toolkit.

Akka has a set of components for every concept that has been discussed so far; the
address of an actor which provides a level of indirection, the mailbox that is used
to temporarily keep messages and of course the actor itself. Our goal here is to
look briefly at the supporting components that are needed and how these connect
together, discuss how Akka abstracts the low-level threading machinery and how
Actors run on top of this abstraction. Actors are part of an Actor System, which has
the responsibility to both provide the supporting components and make it possible
for actors to find each other.

We've already talked quite a bit about what an actor is on a conceptual level in
the previous sections. We identified that we had to make the following changes to
get to a message passing style:

No mutable shared data structure.
Immutable message passing.
Asynchronous message sending.

It's important to remember that when you are using a toolkit or a framework,
the things that you need to know are clearly delineated from the things the toolkit
is doing for you. As you can see in figure 1.10 , an actor is an object that you can
send messages to:it's not your responsibility to worry about the delivery of those
messages, or the receipt of them. Your code can just focus on the fact that an actor
has behavior, it does something specific when certain messages are received. And

1.2 About Akka Actors and ActorSystems

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

20

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

it collaborates with others, by participating in a protocol that represents the
language of the messages (like a DSL in messages rather than method signatures).

Let's look at how Akka implements actors and which components compare to
the concepts we've talked about so far: actors, addresses and mailboxes. Akka is
implemented in Scala and provides both a Java and Scala API which can be used to
build actors, throughout this book we will be showing examples in Scala, using the
Scala API. In the Scala API, Akka provides an Actor trait that you can extend from
to build your own actor. A TicketingAgent could be implemented as an Akka
Actor, which extends from the Actor trait and keeps the state of the games and the
tickets it is going to sell in an internal list. What we have called an address so far is
called an ActorRef in Akka, short for actor reference. The ActorRef to the
TicketingAgent would be used by the Printing Office as the address to send
messages to the TicketingAgent. An ActorRef comes in many shapes in Akka,
although most of these are hidden from view. As a user of the API you just work
with the ActorRef class.

We will walk through a simple example, shown in figure 1.10 that illustrates
what our code will have to do, and what the ActorSystem will do for us. As you
can see, we get to just ask for a ref to the TicketingAgent actor, then once we have
it, we simply send it a buy request (steps 1 and 5). The ActorSystem shields us
from all the details about which actor is going to process our requests, where the
mailbox is, whether it was delivered, etc.

Figure 1.10 Actor Request Cycle in Action

Of course, all the rules we discussed before apply: we are not blocking and
waiting for our request to be processed, we are not embedding any shared state in

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

21

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

the request, and the actual processing of the purchase request doesn't lock
anything, or access any shared state so we have done nothing to prevent requests
from being handled concurrently.

So how do you get an actor reference to an actor in the hierarchy? This is where
ActorPaths come in. You could compare the hierarchy of actors to a URL path
structure. Every actor has a name. This name needs to be unique per level in the
hierarchy, two sibling actors cannot have the same name (if you do not provide a
name Akka generates one for you, but it is a good idea to name all your actors). All
actor references can be located directly by an actor path, absolute or relative, and it
has to follow the URI generic syntax. An actor path is built just like a URI, starting
with a scheme followed by a scheme-specific part, as shown in figure 1.11 :

Figure 1.11 ActorPath URI syntax

In the above example, the printing office actor 'poffice1' can refer to
'TicketingAgent2' by simply using the path 'TicketingAgent2'. TicketingAgent2
can refer to its sibling by using '../TicketingAgent3'. The guardian actor is always
called 'user'.

The notion of parents extends beyond simply organizational tidiness: one of the
most important concepts in Akka, Supervision, is a function of the hierarchy: every
actor is automatically the supervisor of its children. This means that when a child
actor crashes, the parent gets to decide which strategy should be taken to correct
the fault. This also makes it possible to escalate an issue up the hierarchy, where
concerns that are of a more global nature, can be handled by Supervisors whose
focus is on such matters.

In summary, Akka prevents an actor from being created directly by a
constructor because that would circumvent the actor hierarchy; creating an actor
directly by using a constructor would give direct access to the the methods of the
actor, which breaks the rules for a message passing style of concurrency. The actor
system creates actor references, provides a generic way to locate actor references,
provides the root actor to create a hierarchy of actors and connects the runtime
components to the actors.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

22

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

1.

2.

3.

4.

NOTE Core Actor Operations
Another way to look at an actor is to describe the operations that it
supports. An Akka actor has :four core operations

CREATE: An actor can create another actor. In Akka, actors
are part of an actor system, which defines the root of the actor
hierarchy and creates top-level actors. Every actor can create
child actors. The topology of the actors is dynamic, it depends
on which actors create other actors and which addresses are
used to communicate with them.

SEND: An actor can send a message to another actor.
Messages are sent asynchronously, using an address to send
to an Actor associated with a given Mailbox.

BECOME: The behavior of an actor can be dynamically
changed. Messages are received one at a time and an actor
can designate that it wants to handle next messages in a
different way, basically swapping its behavior, which we will
look at in later chapters.

SUPERVISE: An actor supervises and monitors its children in
the actor hierarchy and manages the failures that happen. As
we will see in chapter 3, this provides a clean separation
between message processing and error handling.

We had two large conceptual realms to cover here: the theory and practice of Actor
Systems and Akka's implementation. We went into just enough detail on the
implementation side so that you are ready to use Akka (and we will shift
immediately in the next chapter into getting you up and running), but we laid out
some of what Akka is doing behind the scenes so you know why things are done as
they are. Subsequent chapters will contain more details about what is under the
covers, and how you can configure and customize it for more complex scenarios,
but for now, we already know enough to see the tremendous power of Akka. In the
next chapter, you will see that the cost for this power is low: you can not only get
up and running very quickly, but the complexity of managing messaging and
concurrency is largely shouldered by the toolkit.

The things we saw here, that we will carry forward, included:

1.3 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

23

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Message passing enables an easier road to real concurrency

With that concurrent approach, we will be able to scale up and out

We can scale both the request and the processing elements of our
application

Messages also unlock greater fault tolerance capabilities

Supervision provides a means of modeling for both concurrency and fault
tolerance

Akka infuses our code with these powers in a lightweight, unobtrusive
manner

Hopefully you have been convinced that this approach is better than the old one
of writing the code as though there are no concurrency requirements, then
retrofitting it with locks as mutable state issues arise.

In the next chapter we will get up and running with an Akka instance, building
and running our first working example.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

24

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

2
In this chapter

Fetch a project template
Build a minimal Akka App for the cloud
Deploy to Heroku

Our goal here is to show you how quickly you can make an Akka app that not
only does something nontrivial, but is built to do it to scale, even in its easiest,
early incarnations. We will clone a project from github.com that contains our
example, then we'll walk through the essentials that you will need to know to get
started building Akka apps. First we will look at the dependencies that you need
for a minimal app, using TypeSafe's Simple Build Tool (SBT) to create a single jar
file that can be used to run the app. Throughout the book, we're going to build a
ticket selling app and this chapter will show the first iteration. In this first iteration
we will build a very minimal set of REST services. We'll keep it as simple as
possible to focus on essential Akka features. Finally we will show you how easy it
is to deploy this App to the cloud and get working on popular cloud provider,
Heroku. What will be most remarkable is how quickly we will get to this point!

One of the most exciting things about Akka is how easy it is to get up and
running, and how flexible it is given its small footprint runtime, as you'll soon see.
We will ignore some of the infrastructure details (like the REST implementation),
chapter 8 will go into more detail on how to use Spray, but you will leave this
chapter with enough information to build serious REST interfaces of all types, and
we'll see in the next chapter, how we can combine this with TDD (Test-Driven
Development).

Up and Running

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

25

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

To make things a bit easier we've published the source code for the App on
github.com. The first thing you have to do is clone the repo to a directory of your
choice:

This will create a directory named that contains a directory akka-in-action
 which contains the example project for this chapter. We're expecting thatchapter2

you are already familiar with git and github amongst other tools. Please checkout
the for how to install the tools that you will need to follow along. WeAppendix
will be using sbt, git, the heroku toolbelt and httpie in this chapter. The appendix
also has details on how to setup popular IDE's like Intellij IDEA and Eclipse in
case you would like to set that up.

Let's look at the structure of the project. SBT follows a project structure similar
to Maven with which you are probably familiar. The major difference is that SBT
allows for the use of Scala in the build files, and it has an interpreter. This makes it
quite a bit more powerful. For more information on SBT, see the Manning title

. Inside the chapter2 directory all the code for the server can be foundSBT in Action
in , configuration files and other resources in src/main/scala

, tests and test resources respectively in src/main/resources

 and . The project should buildsrc/test/scala src/test/resources

right out of the box. Run the following command inside the chapter2 directory and
keep fingers crossed:

This should show sbt booting up getting all needed dependencies, running all
the tests and finally building one fat jar into

. You could run the server bytarget/scala-2.10/goticks-server.jar

simply running:

2.1 Clone, Build and Test Interface

 git clone https://github.com/RayRoestenburg/akka-in-action.git

 sbt assembly

 java -jar target/scala-2.10/goticks-server.jar

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

26

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

https://github.com/RayRoestenburg/akka-in-action.git
http://www.manning-sandbox.com/forum.jspa?forumID=835

If you got curious and ran this you should see something similar to the
following output

Now that we have verified that the project builds correctly it's time to talk about
what it does. In the next section we will start with the build file and then look at the
resources and of course the actual code for the services.

Let's first look at the build file. We're using the simple SBT DSL for build files in
this chapter because it gives us all we need right now. It's pretty compact because
the only thing we are employing that is not part of the native Akka stack is Spray.
Of course, as we go forward in the book, we will be back to add more
dependencies to this file, perhaps configure the build to support different target
environments (e.g. Develop, Test, Product), but you can see that for your future
projects you will be able to get going quite quickly, and without the aid of a
template, or by cutting and pasting large build files from other projects. If you have
not worked with the SBT DSL before it is important to note that you need to put en
empty line between lines in the file (this is the price we pay for not telling Scala
where each expression ends). The build file is located directly under the chapter2
directory in a file called build.sbt. The build file starts with two imports:

These imports are needed for two SBT plugins. The first makes it possible to
make the "one jar" file we saw before, goticks-server.jar. This jar contains the
source code for the goticks App and all dependencies it needs. The second import
is required for deploying to Heroku which we will look at in a later section. Next
the build file specifies some project details; the name, version and organization of
our app and the version of scala to use:

Slf4jEventHandler started
akka://com-goticks-Main/user/io-bridge started
akka://com-goticks-Main/user/http-server started on /0.0.0.0:5000

2.1.1 Build with SBT

 import AssemblyKeys._
 import com.typesafe.startscript.StartScriptPlugin

 name := "goticks"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

27

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

akka://com-goticks-Main/user/io-bridge
akka://com-goticks-Main/user/http-server
http://www.manning-sandbox.com/forum.jspa?forumID=835

The following lines specify which maven repositories to use for downloading
the dependencies:

The resolvers is just a list of maven repositories that will be resolved by SBT.
As you can see, we have added the Typesafe and Spray repositories (the build tool
will download all the libraries from them). Next are the dependencies for the
project:

The version of Akka we are using
The akka actor module dependency

The libraryDependencies is just a list of dependencies that SBT will get from
the specified maven repositories. Every dependency points to a maven artifact in
the format organization % module % version (the %% is for automatically using

 version := "0.1-SNAPSHOT"

 organization := "com.goticks"

 scalaVersion := "2.10.0"

resolvers ++=
Seq("repo" at "http://repo.typesafe.com/typesafe/releases/",
"Spray Repository" at "http://repo.spray.io",
"Spray Nightlies" at "http://nightlies.spray.io/")

 libraryDependencies ++= {

 val akkaVersion = "2.1.2"
 val sprayVersion = "1.1-20130123"
 Seq(

 "com.typesafe.akka" %% "akka-actor" % akkaVersion,
 "io.spray" % "spray-can" % sprayVersion,
 "io.spray" % "spray-routing" % sprayVersion,
 "io.spray" %% "spray-json" % "1.2.3",
 "com.typesafe.akka" %% "akka-slf4j" % akkaVersion,
 "ch.qos.logback" % "logback-classic" % "1.0.10",
 "com.typesafe.akka" %% "akka-testkit" % akkaVersion % "test",
 "org.scalatest" %% "scalatest" % "1.9.1" % "test"
)
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

28

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://repo.typesafe.com/typesafe/releases/
http://repo.spray.io
http://nightlies.spray.io/
http://www.manning-sandbox.com/forum.jspa?forumID=835

the right scala version of the library). The most important dependency here is the
 module. The build file concludes with some settings for the pluginsakka-actor

which we will look at in a later section. Now that we have our build file setup we
can compile the code, run the tests and build the jar file. Run the below command
in the chapter2 directory:

The above command cleans out the target directory, compiles all the code and
runs all the tests in the project. If any dependencies still need to be downloaded
SBT will do that automatically. Now that we have the build file in place, lets take a
closer look at what we are trying to achieve with this example in the next section.

Our ticket selling service which will allow customers to buy tickets to all sorts of
events, concerts, sports games and the like. Let's say we're part of a startup called

 and in this very first iteration we have been assigned to build theGoTicks.com
backend REST server for the first version of the service (it's part of a minimum
viable product). Right now we want customers to get a numbered ticket to a show.
Once all the tickets are sold for an event the server should respond with a 404 (Not
Found) HTTP status code. The first thing we'll want to implement in the REST
interface will have to be the addition of a new event (since all other services will
require the presence of an event in the system). A new event only contains the
name of the event, say "RHCP" for the Red Hot Chili Peppers and the total number
of tickets we can sell for the given venue.

The requirements for the REST interface are shown below:

 sbt clean compile test

2.1.2 Fast forward to the GoTicks.com REST server

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

29

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Lets build the app and run it inside SBT. Go to the chapter2 directory and
execute the following command:

This automatically runs the goticks app inside SBT. You should see something
along the lines of this output:

If you get an error make sure that you are not already running the server in
another console, or that some other process is already using port 5000. Lets see if
everything works by using (a human readable HTTP command line toolhttpie

that makes it very simple to send HTTP requests). It has support for JSON and
handles the required housekeeping in headers, among other things. See the
Appendix for more information on how to get it setup.) First lets see if we can
create an event with a number of tickets:

Table 2.1 REST APIm

Description HTTP
Method

URL Body Response example

Create an event with a
number of tickets.

PUT /events { event:
"RHCP",
nrOfTickets
: 250}

HTTP 200 OK

Get an overview of all
events and the number of
tickets available.

GET /events [{ event : "RHCP",
nrOfTickets : 249}, {
event : "Radiohead",
nrOfTickets : 130},]

Buy a ticket GET /ticket/:eventName { event: "RHCP", nr:
1 } or HTTP 404

 sbt run

akka://com-goticks-Main/user/http-server started on /0.0.0.0:5000

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

30

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

akka://com-goticks-Main/user/http-server
http://www.manning-sandbox.com/forum.jspa?forumID=835

The above command creates a JSON request entity with an event and a
nrOfTickets; . It creates a PUT{ event: "RHCP", nrOfTickets : 10}

request to our running server and prints out the response. You should see a
response that looks like this:

The event is now created. Lets create another one:

Now lets try out the GET request:

Which should give the below response:

 http PUT localhost:5000/events event=RHCP nrOfTickets:=10

 HTTP/1.1 200 OK
 Content-Length: 2
 Content-Type: text/plain
 Date: Tue, 16 Apr 2013 11:22:48 GMT
 Server: GoTicks.com REST API
 OK

 http PUT localhost:5000/events event=DjMadlib nrOfTickets:=15

 http GET localhost:5000/events

HTTP/1.1 200 OK
Content-Length: 92
Content-Type: application/json; charset=UTF-8
Date: Tue, 16 Apr 2013 12:39:10 GMT
Server: GoTicks.com REST API
[
 {
 "event": "DjMadlib",
 "nrOfTickets": 15
 },
 {
 "event": "RHCP",
 "nrOfTickets": 10
 }
]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

31

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Notice, we are seeing both events, and of course, all the tickets are still
available. Now lets see if we can buy a ticket for the RHCP event:

The app issues a ticket and sends it to us, here is our Ticket (again, as JSON):

If we GET on /events again you should see the following response:

As expected there are now only 9 tickets left. You should get a 404 after
repeating the /ticket/RHCP request 11 times:

 http GET localhost:5000/ticket/RHCP

 HTTP/1.1 200 OK
 Content-Length: 32
 Content-Type: application/json; charset=UTF-8
 Date: Tue, 16 Apr 2013 12:40:00 GMT
 Server: GoTicks.com REST API
 {
 "event": "RHCP",
 "nr": 1
 }

 HTTP/1.1 200 OK
 Content-Length: 91
 Content-Type: application/json; charset=UTF-8
 Date: Tue, 16 Apr 2013 12:41:42 GMT
 Server: GoTicks.com REST API
 [
 {
 "event": "DjMadlib",
 "nrOfTickets": 15
 },
 {
 "event": "RHCP",
 "nrOfTickets": 9
 }
]

 HTTP/1.1 404 Not Found
 Content-Length: 83
 Content-Type: text/plain
 Date: Tue, 16 Apr 2013 12:42:57 GMT

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

32

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

That concludes all the API calls in the REST interface. Clearly, at this point, the
application supports the basic Event CRUD cycle from creation of the actual
Event, through the sale of all the tickets until they are sold out. This is not
comprehensive of course, for instance, we are not accounting for Events that will
not sell out, but whose tickets will need to become unavailable once the actual
Event has started. Now let's look at the details of how we're going to get to this
result in the next section.

In this section we're going to look at how the App is built. You can try and build
the Actors yourself or just follow along from the source code on github.com. As
you now know, actors can perform four operations; create, send/receive, become
and supervise. In this example we'll only touch on the first two operations. First,
we'll take a look at the overall structure: how operations will be carried out by the
various collaborators (actors) to provide the core functionality: creating events,
issuing tickets, finishing events.

The App consists of three actor classes in total. The first thing we have to do is
create an actor system that will contain all the actors. After that the actors can
create each other. The below figure shows the sequence:

Figure 2.1 Actor Creation Sequence Triggered by REST Request

The will handle the HTTP requests. It isREST Interface Actor

 Server: GoTicks.com REST API
 The requested resource could not be found
 but may be available again in the future.

2.2 Explore the Actors in the App

2.2.1 Structure of the App

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

33

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

basically an adapter for HTTP: it takes care of converting from and to JSON and
provides the required HTTP response. Even in this simplest example, we can see
how the fulfillment of a request spawns a number of collaborators, each with
specific responsibilities. The TicketSeller eventually keeps track of the tickets for
one particular event and sells the tickets. The figure shows how a request for
creating an Event flows through the actor system (this was the first service we
showed above):

Figure 2.2 Create an Event from the received JSON request

The second service we discussed above was the ability for a Customer to
purchase a ticket (now that we have an Event). The figure shows what should
happen when such a ticket purchase request is received (as JSON):

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

34

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 2.3 Buy a Ticket

This is the most important flow in this tiny application: our business is
essentially about connecting Customers to available Tickets. And, as we discussed,
this is also where we will most likely come under pressure later, when we are
actually using this in the real world.

Let's step back and start looking at the code as a whole, first up the Main class,
which starts everything up. The Main object is a simple Scala App that you can run
just like any other Scala App. It's similar to a Java class with a main method.
Below is the listing of the Main class:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

35

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 2.1 Application Bootstrap: Main Class Starting Spray (and its
ActorSystem)

A Spray-can App
Load a configuration file
Get some HTTP configuration values
Create the top level REST Interface actor
Start a Spray HTTP server

Main extends App with the SprayCanHttpServerApp trait. Simply by adding
the trait, we can then just pull out our config parameters for the server settings and
inject them into the call to create the RestInterface actor, which will be given the
responsibility to handle requests that come to this instance. You really don't need
to know the details of how Spray is making this possible (we will cover them in
detail later). The last line in the Main class actually starts the server and binds it to
a host and port. The App uses the following messages internally between the
actors: REST Interface Message Classes

 case class Event(event:String, nrOfTickets:Int)

 case object GetEvents

 case class Events(events:List[Event])

 case object EventCreated

 package com.goticks
 import spray.can.server.SprayCanHttpServerApp
 import akka.actor.Props
 import com.typesafe.config.ConfigFactory

 object Main extends App with SprayCanHttpServerApp {

 val config = ConfigFactory.load()

 val host = config.getString("http.host")
 val port = config.getInt("http.port")
 val api = system.actorOf(
 Props(new RestInterface()),
 "httpInterface"

)

 newHttpServer(api) ! Bind(interface = host, port = port)
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

36

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

 case class TicketRequest(event:String)

 case object SoldOut

 case class Tickets(tickets:List[Ticket])

 case object BuyTicket

 case class Ticket(event:String, nr:Int)

Message to create an event

Message for requesting the state of all events

Response message that contains current status of all events

Signal event to indicate an event was created

Request for a ticket for a particular event

Signal event that the event is sold out

New tickets for an Event, created by BoxOffice

Message to buy a ticket from the TicketSeller

The numbered ticket to an event

As is typical of REST apps, we have an interface that revolves around the
lifecycles of the core entities: Events and Tickets. Remember, Akka is going to get
these parts to go together with immutable messages, so the Actors have to be
designed to get all the information they need, and produce all that is needed if they
enlist any collaborators. This lends itself well to REST. In the next sections we're
going to look at the Actors in more detail. We'll start from the TicketSeller and
work our way up.

The TicketSeller is created by the BoxOffice and just simply keeps a list of tickets.
Every time a ticket is requested it takes the next one from the head of the list. The
below listing shows the code for the TicketSeller:

2.2.2 The Actor that handles the sale: TicketSeller

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

37

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 2.3 TicketSeller Implementation

The list of tickets
Return the size of the list when GetEvents is received
add the new tickets to the existing list of tickets when Tickets message is received
Report SoldOut and kill self if there are no more tickets. Otherwise get the head
ticket and leave the rest in the tickets list.

The TicketSeller takes a so called after it has reported it is soldPoisonPill

out. This nicely cleans up the actor (deletes it) when it has no more work to do. In
the next section we're going to look at the BoxOffice actor.

The BoxOffice needs to create TicketSeller children for every event and delegates
the selling to them. The below listing shows how the BoxOffice responds to an
Event message:

 package com.goticks

 import akka.actor.{PoisonPill, Actor}

 class TicketSeller extends Actor {
 import TicketProtocol._

 var tickets = Vector[Ticket]()

 def receive = {

 case GetEvents => sender ! tickets.size

 case Tickets(newTickets) =>

 tickets = tickets ++ newTickets

 case BuyTicket =>

 if (tickets.isEmpty) {
 sender ! SoldOut
 self ! PoisonPill
 }

 tickets.headOption.foreach { ticket =>
 tickets = tickets.tail
 sender ! ticket
 }
 }
 }

2.2.3 BoxOffice

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

38

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 2.4 BoxOffice Creates TicketSellers

The BoxOffice creates TicketSellers for each event. Notice that it uses it's
 instead of the actor system to create the actor; Actors created with thecontext

context of another Actor are its children and subject to the parent Actor's
supervision (much more about that in subsequent chapters). It builds up a list of
numbered tickets for the event and sends these tickets to the TicketSeller. It also
responds to the sender of the Event message that the Event has been created (the
sender here is always the RestInterface actor). The below listing shows how the
BoxOffice responds to the TicketRequest:

The BoxOffice tries to find a child TicketSeller for the event and if it finds it it
forwards a message to the ticketSeller. If there is no child for theBuyTicket

event it sends a message back to the sender (The RestInterface). TheSoldOut

next message is a bit more involved and will get you extra credit if you get it the
first time. We're going to ask all TicketSellers for the number of tickets they have
left and combine all the results into a list of events. This gets interesting because
ask is an asynchronous operation and at the same time we don't want to wait and
block the BoxOffice from handling other requests.

The below code uses a concept called Futures which will be explained further

 case Event(name, nrOfTickets) =>

 if(context.child(name).isEmpty) {
 val ticketSeller = context.actorOf(Props[TicketSeller], name)

 val tickets = Tickets((1 to nrOfTickets).map{
 nr=> Ticket(name, nr)).toList
 }
 ticketSeller ! tickets
 }

 sender ! EventCreated

If TicketSellers
have not been
created already

 case TicketRequest(name) =>

 context.child(name) match {
 case Some(ticketSeller) => ticketSeller.forward(BuyTicket)
 case None => sender ! SoldOut
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

39

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

in a chapter 7 so if you feel like skipping it now that's fine. If you're up for a
challenge though lets look at the code below!

Listing 2.5 Using Futures

A local method definition for asking GetEvents to a TicketSeller.
Ask for the number of tickets that are left without waiting. The futureInt will at
some point get the value
Transform the future value from an Int to an Event.
Ask all the children how many tickets they have left for the event.

Right now we will skim over this example and just look at the concepts. What
is happening here is that an method returns immediately with a to theask Future

response. A Future is a value that is going to be available at some point in the
future (hence the name). Instead of waiting for the response value (the number of
tickets left) we get a future reference (which you could read as 'use for future
reference'). We never read the value directly but instead we define what should
happen once the value becomes available. We can even combine a list of Future
values into one list of values and describe what should happen with this list once
all of the asynchronous operations complete.

The code finally sends an Events message back to the sender once all responses
have been handled.

 import akka.pattern.ask

 val capturedSender = sender

 def askEvent(ticketSeller:ActorRef): Future[Event] = {

 val futureInt = ticketSeller.ask(GetEvents).mapTo[Int]

 futureInt.map { nrOfTickets =>
 Event(ticketSeller.actorRef.path.name, nrOfTickets)
 }
 }

 val futures = context.children.map { ticketSeller =>
 askEvent(ticketSeller)
 }

 Future.sequence(futures).map { events =>
 capturedSender ! Events(events.toList)
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

40

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Don't worry if this is not immediately clear, we have a whole chapter devoted to
this subject. We're just trying to get you curious about this awesome feature, check
out chapter 7 on Futures if you can't wait to find out how these non-blocking
asynchronous operations work. That concludes the salient details of the BoxOffice.
We have one actor left in the App which will be handled in the next section; the
REST interface.

The REST interface uses the Spray routing DSL which will be covered in detail in
chapter 9. Services interfaces, as they grow, need more sophisticated routing of
requests. Since we are really just creating an Event and then selling the Tickets to
it, our routing requirements are few at this point. Let's look at the details of doing
simple request routing in the below listings. First the REST interface needs to
handle an Event request:

Listing 2.6 Creation of the BoxOffice Actor

The REST Interface creates a BoxOffice child actor when it is constructed. It
also creates a temporary actor which stays around for the lifetime ofResponder

the HTTP request:

Listing 2.7 Responder being created

This responder sends messages to the BoxOffice and handles the responses that
are sent back from the TicketSeller and BoxOffice actors. The below code shows a
snippet of the DSL that is used to handle HTTP requests:

2.2.4 REST Interface

 val BoxOffice = context.actorOf(Props[BoxOffice])

def createResponder(requestContext:RequestContext) = {
 context.actorOf(Props(new Responder(requestContext, BoxOffice)))
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

41

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 2.8 Spray Route Definition (DSL)

The request entity is unmarshalled into a TicketRequest object, freeing us from
having to write code to specifically adapt messages into objects. The BoxOffice is
asked for the ticketRequest. The response is piped to the responder actor using the

 pattern. The Responder completes the HTTP request when it receives thepipe
Ticket or SoldOut response from the TicketSeller:

Listing 2.9 Responder Handles Request Completion: the Response

 path("ticket") {
 get {
 entity(as[TicketRequest]) { ticketRequest => requestContext =>
 val responder = createResponder(requestContext)
 BoxOffice.ask(ticketRequest).pipeTo(responder)
 }
 }
 }

 class Responder(requestContext:RequestContext,
 BoxOffice:ActorRef)
 extends Actor with ActorLogging {
 import TicketProtocol._
 import spray.httpx.SprayJsonSupport._

 def receive = {

 case ticket:Ticket =>
 requestContext.complete(StatusCodes.OK, ticket)
 self ! PoisonPill

 case EventCreated =>
 requestContext.complete(StatusCodes.OK)
 self ! PoisonPill

 case SoldOut =>
 requestContext.complete(StatusCodes.NotFound)
 self ! PoisonPill

 case Events(events) =>
 requestContext.complete(StatusCodes.OK, events)
 self ! PoisonPill

 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

42

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

As you can see the responder kills itself after it has completed the request. It's
only around for as long as the HTTP request is being processed. The messages are
automatically converted back to JSON. You can find the details of how this is done
in the chapter on Spray. That concludes all the actors in the first iteration of the
GoTicks.com application. If you followed along or even tried to rebuild this
yourself, congratulations! You've just seen how to build your first fully
asynchronous akka actor App with a fully functional REST interface. While the
app itself is rather trivial, we have already made it so that the processing is fully
concurrent, and the actual selling of the Tickets is both scalable (because it's
already concurrent) and fault tolerant (we will see much more on that). This
example also showed how we can do asynchronous processing within the
synchronous request/response paradigm of the HTTP world. We hope that you've
found that it takes only a few lines of code to build this app. Compare that to a
more traditional toolkit or framework and I'm sure that you are pleasantly surprised
to see how little code was needed. For a little cherry on the top, we're going to
show you what we need to do to deploy this minimal App to the cloud. We'll get
this app running on Heroku.com in the next section.

Heroku.com is a popular cloud provider which has support for Scala applications,
and free instances that you can play with. In this section we're going to show you
how easy it is to get the GoTicks.com App up and running on Heroku. We're
expecting that you have already installed the Heroku toolbelt. If not please refer to
the Appendix for how to install it. You will also need to sign up for an account on
heroku.com. Visit their site the signup speaks for itself. In the next section we're
first going to create an app on heroku.com. After that we will deploy it and run it.

First login to your heroku account:

Next create a new heroku app that will host our GoTicks.com App. Execute the
following command in the chapter2 directory:

2.3 Into the Cloud

2.3.1 Create the App on Heroku

 heroku login

 heroku create

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

43

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

You should see something like the following response:

We need to add a couple of things to our project so Heroku understands how to
build our code. First the project/build.properties file:

This file needs to specify which version of SBT you are using. Let's also look at
the project/plugins.sbt file:

This file registers all the plugins we have been using so far. The startscript
plugin creates a script for running our App on Heroku. We also need a so-called

 right under the chapter2 directory which tells heroku that our App shouldProcfile
be run on a , which is one of the types of processes heroku runs on itsWeb Dyno
virtual Dyno Manifold. The ProcFile is shown below:

It specifies that Heroku should run the script that the start-script-plugin has
built with the Main App class as argument. Let's first test to see if everything runs
locally. Execute the following command:

 Creating damp-bayou-9575... done, stack is cedar
 http://damp-bayou-9575.herokuapp.com/
 | git@heroku.com:damp-bayou-9575.git

 sbt.version=0.12.2

 resolvers += Classpaths.typesafeResolver

 addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.8.7")

addSbtPlugin(
 "com.typesafe.startscript" % "xsbt-start-script-plugin" % "0.5.3"
)

 web: target/start com.goticks.Main

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

44

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://damp-bayou-9575.herokuapp.com/
mailto:git@heroku.com:damp-bayou-9575.git
http://www.manning-sandbox.com/forum.jspa?forumID=835

This is the same command that Heroku will run on the cloud later on. It builds
all the code and creates the target/start script. You can now run the ProcFile locally
by using Heroku's tool:foreman

This should show something like the following on the command line:

This is all that's required to prepare an application for deployment on Heroku. It
lets us go through the whole cycle locally so that we are working at maximum
speed while getting our first deploy done. Once we actually deploy to Heroku,
you'll see that all subsequent pushes to the cloud instances are accomplished
directly through git by simply pushing the desired version of the source to our
remote instance. The deployment of the app to the Heroku cloud instance is
described in the next section.

We've just verified that we could locally run the App with foreman. We created a
new app on heroku with . This command also added a heroku create git

 with the name heroku to the git configuration. All we have to do now isremote
make sure all changes are committed locally to the git repository. After that push
the code to heroku with the following command:

The above assumes that you committed any changes to your master branch.
Heroku hooks into the git push process and identifies the code as a Scala App. It

 sbt clean compile stage

 foreman start

 01:15:05 web.1| started with pid 90796
 01:15:07 web.1| Slf4jEventHandler started
 01:15:10 web.1| akka://com-goticks-Main/user/io-bridge started
 01:15:11 web.1| akka://com-goticks-Main/user/http-server started

2.3.2 Deploy and Run on Heroku

 git push heroku master

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

45

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

akka://com-goticks-Main/user/io-bridge
akka://com-goticks-Main/user/http-server
http://www.manning-sandbox.com/forum.jspa?forumID=835

downloads all dependencies on the cloud, compiles the code and starts the
application. Finally you should see something like the below output:

The above shows the console on creation of the App: note that Heroku figured
out that our app is a Scala app, so it installed the OpenJDK, then compiled and
launched the source in the instance. The App is now deployed and started on
Heroku. You can now use httpie again to test the App on heroku:

The above commands should result in similar response as before.
Congratulations, you just deployed your first Akka App to Heroku! With that we
conclude this first iteration of the GoTicks.com app. Of course, now that the app is
deployed on Heroku, you can call it from anywhere.

In this chapter you have seen how little is necessary to build a fully functional
REST service out of Actors. All interactions were asynchronous. The service
performed as expected when we tested it with the httpie commandline tool.

We even deployed our app (via Heroku.com) into the Cloud! We're hoping you
got excited about what a quick out of the box experience Akka offers. Of course
the GoTicks.com App is not ready for production yet. There is no persistent
storage for tickets. We've deployed to Heroku, but web dynos can be replaced at
any time so purely storing the tickets in memory will not work in real life. The App
is scaled up but has not scaled out yet to multiple nodes.

 ----> Scala app detected
 -----> Installing OpenJDK 1.6...
 // resolving downloads, downloading dependencies

 -----> Compiled slug size is 43.1MB
 -----> Launching... done, v1
 http://damp-bayou-9575.herokuapp.com deployed to Heroku

 To git@heroku.com:damp-bayou-9575.git
 * [new branch] master -> master

http PUT damp-bayou-9575.herokuapp.com/events \
event="RHCP" nrOfTickets:=10
http GET damp-bayou-9575.herokuapp.com/ticket/RHCP

2.4 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

46

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://damp-bayou-9575.herokuapp.com
mailto:git@heroku.com:damp-bayou-9575.git
http://www.manning-sandbox.com/forum.jspa?forumID=835

But we promise to fix that in later chapters where we will gradually get closer
to a real world system. In the next chapter, we're going to look at how to test actor
systems.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

47

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

3
In this chapter

Testing Actors

Some Rules to Follow

Speed of Development

It's amusing to think back to when TDD first appeared on the scene, the primary
objection was that tests take too long, and thus hold up development. Though you
rarely hear that today, there is a vast difference in the testing load both between
different stacks, and through different phases (e.g. unit vs. integration tests).
Everyone has a rapid, fluid experience on the unit side, when testing is confined to
a single component. Tests that involve collaborators is where ease and speed
generally evaporate rapidly. Actors provide an interesting solution to this problem
for the following reasons:

Actors are a more direct match for tests because they embody behavior
(and almost all TDD has at least some (Behavior-DrivenBDD
Development) in it)

Too often regular unit tests test only the interface, or have to test
separately interface and functionality

Actors are built on messaging, which has huge advantages for testing as
you can easily simulate behaviors by just sending messages

Before we start testing (and coding), we will take several of the concepts from

Test Driven Development with Actors

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

48

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

the previous chapter and show their expression in code, introducing the Actor API
for creating actors then sending and receiving messages. Important details about
how the actors are actually run and some rules you have to follow to prevent
problems will be covered. After that, we will move on to the implementation of
some common scenarios, taking a test-driven approach to writing the actors,
immediately verifying that the code does what we would expect. At each step
along the way, we will focus first on the goal that we are going to try to achieve
with the code (one of the main points of TDD). Next, we'll write a test
specification for the Actor, which will start the development of the code
(TDD/Test First style). Then, of course, we will write enough code to make the test
pass, and repeat. Rules that need to be followed to prevent accidentally sharing
state will be discovered as we go, as well as some of the details of how actors work
in Akka that have an impact on test development.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

49

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

First, we need to learn how to test sending and receiving messages, first in fire and
forget style (one-way) followed by request response style (two-way) interaction.
We are going to use the unit testing framework that is also used to testScalaTest
Akka itself. ScalaTest is a xUnit style testing framework, if you are not familiar
with it and would like to know more about it, please visit http://www.scalatest.org/
for more information. The ScalaTest framework is designed for readability, so it
should be easy to read and follow the test without much introduction. Upon first
exposure, testing Actors is more difficult than testing normal objects for a couple
of reasons:

 - Sending messages is asynchronous, so it is difficult to know whenTiming
to assert expected values in the unit test.

 - Actors are meant to be run in parallel on several threads.Asynchronicity
Multi-threaded tests are more difficult than single-threaded tests and require
concurrency primitives like locks, latches and barriers to synchronize results
from various actors. Exactly the kind of thing we wanted to get a bit further
away from. Incorrect usage of just one barrier can block a unit test which in
turn halts the execution of a full test suite.

 - An actor hides its internal state and does not allow access toStatelessness
this state. Access should only be possible through the ActorRef. Calling a
method on an actor and checking its state is prevented on purpose, which is
something you would like to be able to do when unit testing.

 - If you want to do an integration test of a coupleCollaboration/Integraton
of actors, you would need to eavesdrop in between the actors to assert that
the messages have the expected values. It's not immediately clear how this
can be done.

Luckily Akka provides the module. This module contains a number ofakka-testkit
testing tools that makes testing actors a lot easier. The testkit module makes a
couple of different types of tests possible:

 - An actor instance is normally not accessibleSingle threaded unit testing
directly. The testkit provides a which allows access to theTestActorRef

underlying actor instance. This makes it possible to just test the actor

3.1 Testing Actors

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

50

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.scalatest.org/
http://www.manning-sandbox.com/forum.jspa?forumID=835

instance directly by calling the methods that you have defined, or even call
the receive function in a single threaded environment, just as you are used to
when testing normal objects.

 - The testkit module provides the Multi-threaded unit testing TestKit

and classes, which make it possible to receive replies fromTestProbe

actors, inspect messages and set timing bounds for particular messages to
arrive. The TestKit has methods to assert expected messages. Actors are run
using a normal dispatcher in a multi-threaded environment.

 - Akka also provides tools for testing multiple JVMs,Multiple JVM testing
which comes in handy when you want to test remote actor systems.
Multi-JVM testing will be discussed on chapter 5.

The TestKit has the extending the classTestActorRef LocalActorRef

and sets the dispatcher to a that is built forCallingThreadDispatcher

testing only. (It invokes the actors on the calling thread instead of on a separate
thread.) This provides one of the key junction points for advancing the above-listed
solutions.

Depending on your preference, you might use one of the styles more often. The
option that is of course closest to actually running your code in production is the
multi-threaded style testing with the class. We will focus more on theTestKit

multi-threaded approach to testing, since this can show problems with the code that
will not be apparent in a single-threaded environment. (You probably will not be
surprised that we also prefer a classical unit testing approach over mocking).

Next, we'll cover what needs to be done to get ready to start writing tests
(setup). Then, we'll go into testing with messages, and will see some of our first
working examples.

Before we start we will have to do a little preparation so that we don't repeat
ourselves unnecessarily. The HelloWorld example showed that once an actor
system is created, it is started and continues to run until it is stopped. Let's build a
small trait which we can use for all the tests that makes sure that the system under
test is automatically stopped when the unit test ends.

3.1.1 Preparing to Test

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

51

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 3.1 Stop the system after all tests are done

Extend from the BeforeAndAfterAll ScalaTest trait.
This trait can only be used if it is mixed in with a test that uses the TestKit.
Shutdown the system after all tests have executed.

We will mixin this trait when we write our tests, so that the system is
automatically shutdown after all tests are executed. The TestKit exposes a

 value, which can be accessed in the test to create actors and everythingsystem

else you would like to do with the system.
In the next sections we are going to use the testkit module to test some common

scenarios when working with actors, both in a single threaded and in a
multi-threaded environment. There are only a few different ways for the actors to
interact with each other. We will explore the different options that are available
and test the specific interaction with the testkit module.

import org.scalatest.{ Suite, BeforeAndAfterAll }
import akka.testkit.TestKit

trait StopSystemAfterAll extends BeforeAndAfterAll {

 this: TestKit with Suite =>
 override protected def afterAll() {
 super.afterAll()

 system.shutdown()
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

52

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Remember, we have left the land of invoke a function and wait on the response, so
the fact that our examples are all just sending one way messages with istell

deliberate. Given this fire and forget style, we don't know when the message
arrives at the actor, or if it even arrives, so how do we test this? What we would
like to do is send a message to an actor, and after sending the message check that
the actor has done the work it should have done. An actor that responds to
messages should do something with the message and take some kind of action, like
send a message to another actor, or store some internal state, or interact with
another object, or with I/O for instance in some kind of way. If the actor its
behavior is completely invisible from the outside, we can only check if it handled
the message without any errors, and we could try to look into the state of the actor
with the . There are a three variations that we will look at:TestActorRef

 - An actor's behavior is not directly observable from theSilentActor
outside, it might be an intermediate step that the actor takes to create some
internal state. We want to test that the actor at least handled the message and
did not throw any exception. We want to be sure that the actor has finished.
We want to test the internal state change.

 - An actor sends a message to another actor (or possiblySendingActor
many actors) after it is done processing the received message. We will treat
the actor as a black box and inspect the message that is sent out in response
to the message it received.

 - An actor receives a message and interacts with aSideEffectingActor
normal object in some kind of way. After we send a message to the actor, we
would like to assert if the object was effected.

We will write a test for each type of actor in the above list that will illustrate the
means of verifying results in tests you write.

Let's start with the SilentActor. Since it's our first test lets go briefly through the
use of ScalaTest:

3.2 One-way messages

3.2.1 SilentActor Examples

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

53

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 3.2 First test for the silent actor type

extend from TestKit and provide an actor system for testing.
WordSpec provides an easy to read DSL for testing in the BDD style
MustMatchers provides easy to read assertions
Make sure the system is stopped after all tests
Write tests as textual specifications
Every 'in' describes a specific test

The above code is the basic skeleton that we need to start running a test for the
silent actor. We're using the style of testing, since it makes it possibleWordSpec

to write the test as a number of textual specifications, which will also be shown
when the test is run. In the above code, we have created a specification for the
silent actor type with a test that should as it says "change internal state when it
receives a message." Right now it always fails since it is not implemented yet, as is
expected in style, where you first make sure the test failsRed-Green-Refactor
(Red), then implement the code to make it pass (Green), after which you might
refactor the code to make it nicer. First we will test the silent actor in a
single-threaded environment. We've included the TestKit already since we are also
going to test if everything works well in a multi-threaded environment a bit later,
which is not necessary if you only use the . Below we haveTestActorRef

defined an Actor that does nothing, and will always fail the tests:

class SilentActor01Test extends TestKit(ActorSystem("testsystem"))

 with WordSpec

 with MustMatchers

 with StopSystemAfterAll {

 "A Silent Actor" must {

 "change state when it receives a message, single threaded" in {
 //Write the test, first fail
 fail("not implemented yet")
 }
 "change state when it receives a message, multi-threaded" in {
 //Write the test, first fail
 fail("not implemented yet")
 }
 }

}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

54

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 3.3 First failing implementation of the silent actor type

swallows any message, does not keep any internal state

Now lets first write the test to send the silent actor a message and check that it
changes its internal state. The actor will have to be written for thisSilentActor

test to pass, as well as an object called . This objectSilentActorProtocol

contains all the messages that supports, which is a nice way ofSilentActor

grouping messages that are related to each other as we will see later.

Listing 3.4 Single-threaded test internal state

Import the messages
Create a TestActorRef for single-threaded testing
Get the underlying actor and assert the state

This is the simplest version of the typical TDD scenario: trigger something and
check for a state change. Now let's write the actor:SilentActor

class SilentActor extends Actor {
 def receive = {

 case msg => ()
 }
}

"change internal state when it receives a message, single" in {

 import SilentActorProtocol._

 val silentActor = TestActorRef[SilentActor]
 silentActor ! SilentMessage("whisper")

 silentActor.underlyingActor.state must (contain("whisper"))
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

55

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 3.5 SilentActor implementation

A 'protocol' which keeps related messages together
The message type that the SilentActor can process
the state is kept in a Vector, every message is added to this Vector.
the state method returns the built up Vector

Since the returned list is a immutable, the test can't change the list and cause
problems when asserting the expected result. It's completely safe to set/update the
internalState var, since the Actor is protected from multi-threaded access. In
general it is good practice to prefer vars in combination with immutable data
structures instead of vals in combination with mutable data structures.

Now lets look at the multi-threaded version of this test, as you will see we will
have to change the code for the actor a bit as well. Just like in the single-threaded
version where we added a state method to make it possible to test the actor, we will
have to add some code to make the multi-threaded version testable.

 object SilentActorProtocol {

 case class SilentMessage(data: String)
 case class GetState(receiver: ActorRef)
 }

 class SilentActor extends Actor {
 import SilentActorProtocol._
 var internalState = Vector[String]()

 def receive = {
 case SilentMessage(data) =>

 internalState = internalState :+ data
 }

 def state = internalState
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

56

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 3.6 Multi-threaded test of internal state

A 'protocol' which keeps related messages together
The test system is used to create an actor
A message is added to the protocol to get the state
Used to check what message(s) have been sent to the testActor

The multi-threaded test uses the "testsystem" ActorSystem that is part of the
TestKit to create a actor. Since we now cannot just access theSilentActor

actor instance when using the multi threaded actor system, we'll have to come up
with another way to see state change. For this a message is addedGetState

which takes an . The TestKit has a which you can use toActorRef testActor

receive messages that you expect. The GetState method we added is so we can
simply have our send its internal state there. That way we can callSilentActor

the method, which expects one message to be sent to the expectMsg

 and asserts the message, in this case that it is a Vector with all thetestActor

data fields in it.

"change internal state when it receives a message, multi" in {

 import SilentActorProtocol._

 val silentActor = system.actorOf(Props[SilentActor], "s3")
 silentActor ! SilentMessage("whisper1")
 silentActor ! SilentMessage("whisper2")

 silentActor ! GetState(testActor)

 expectMsg(Vector("whisper1", "whisper2"))
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

57

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

SIDEBAR Timeout settings for the expectMsg* methods
The TestKit has several versions of the and other methodsexpectMsg

for asserting messages. All of these methods expect a message within
a certain amount of time, otherwise they timeout and throw an
exception. The timeout has a default value that can be set in the
configuration using the "akka.test.single-expect-default" key.
A is used to calculate the actual time that should be useddilation factor
for the timeout (it is normally set to 1, which means the timeout is not
dilated). Its purpose is to provide a means of leveling machines that can
have vastly different computing capabilites: so on a slower machine, we
should prepared to wait a bit longer (common for developers to run
tests on their fast workstations then commit and have probably slower
continuous integration servers fail). Each machine can be configured
with the factor needed to achieve (Check out Chapter 4 for more details
on configuration) The max timeout can also be set on the method
directly, but it is better to just use the configured values, and change the
values across tests in the configuration if necessary.

Now all we need is the code for the silent actor that can also process
 messages:GetState

Listing 3.7 SilentActor implementation

The GetState message is added for testing purposes
The internal state is sent to the ActorRef in the GetState message

The internal state is sent back to the ActorRef in the GetState message, which
in this case will be the testActor. Since the internal state is an immutable Vector,

object SilentActorProtocol {
 case class SilentMessage(data: String)

 case class GetState(receiver: ActorRef)
}
class SilentActor extends Actor {
 import SilentActorProtocol._
 var internalState = Vector[String]()
 def receive = {
 case SilentMessage(data) =>
 internalState = internalState :+ data

 case GetState(receiver) => receiver ! internalState
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

58

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

this is completely safe. This is it for the types: single and multiSilentActor

threaded variants. Using these approaches, we can construct tests that are very
familiar to most programmers: state changes can be inspected and asserted upon by
leveraging a few tools in the TestKit.

Returning to our ticketing example from Chapter 1, we need to test the fact that
when we buy a to an , the count of available tickets is properlyTicket Event

decremented. There's a Lakers vs Bulls game and we want to be able to support
any number of requests for tickets. Since the is designed toTicketingAgent

remove a ticket and pass it on to the next one, all we have to do is create a
SendingActor and inject it into the chain as the next recipient, then we can see the
state of the tickets collection and assert that there is one less than there was when
we started.

Listing 3.8 Kiosk01 test

The next TicketingAgent is passed to the constructor, in the test we pass in a
testActor
An Event message is created with three tickets
the testActor should receive an Event
the testActor should receive one ticket less

A game is sent to the Actor, which should process the andAgent01 Event

take off one , and send it off to the next Agent. In the test we pass in the Ticket

 instead of another Agent, which is easily done, since the testActor

3.2.2 SendingActor Example

"A Sending Actor" must {
 "send a message to an actor when it has finished" in {
 import Kiosk01Protocol._

 val props = Props(new Kiosk01(testActor))
 val sendingActor = system.actorOf(props, "kiosk1")
 val tickets = Vector(Ticket(1), Ticket(2), Ticket(3))

 val game = Game("Lakers vs Bulls", tickets)
 sendingActor ! game
 expectMsgPF() {

 case Game(_, tickets) =>

 tickets.size must be(game.tickets.size - 1)
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

59

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

 is just an ActorRef. Since we cannot exactly know which ticket wasnextAgent

taken off, we can't use a since we can't formulate an exactexpectMsg(msg)

match for it. In this case we use which takes a partial function justexpectMsgPF

like the of the actor. Here we match the message that was sent to the receive

 , which should be a with one less ticket. Of course, if we runtestActor Event

the test now, it will fail because we have not implemented the message protocol in
 . Let's do that now.Agent1

Listing 3.9 Agent01 implementation

The next Agent is passed to the constructor, in the test we pass in a testActor
The simplified Ticket message
The Event contains tickets
an immutable copy is made of the Event message with one less ticket

We once again create a protocol that keeps all related messages together. The
 actor matches the message and extracts the out of itAgent1 Event tickets

(it's not interested in the first field which is the of the event), and assigns an name

 to the message named . Next it creates an immutable copy using the alias event

 method that every case class has. The copy will only contain the ofcopy tail

the list of tickets, which is an empty list if there were no tickets left, or everything
except for the first ticket in the list. Once again we take advantage of the
immutable property of case classes. The event is sent along to the nextAgent.

Let's look at some variations of the SendingActor type. Here are some common
variations on the theme:

object Kiosk01Protocol {

 case class Ticket(seat: Int)

 case class Game(name: String, tickets: Seq[Ticket])
}

class Kiosk01(nextKiosk: ActorRef) extends Actor {
 import Kiosk01Protocol._
 def receive = {
 case game @ Game(_, tickets) =>

 nextKiosk ! game.copy(tickets = tickets.tail)
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

60

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The MutatingCopyActor, ForwardingActor and TransformingActor can all be
tested in the same way. We can pass in a testActor as the next actor to receive
messages and use the or to inspect the messages.expectMsg expectMsgPF

The FilteringActor is a bit different in that it addresses the question of how can we
assert that some messages were passed through? The SequencingActor needs anot
similar approach. How can we assert that we received the correct number of
messages? The next test will show you how. Let's write a test for the
FilteringActor. The FilteringActor that we are going to build should filter out
duplicate events. It will keep a list of the last messages that it has received, and
will check each incoming message against this list to find duplicates. (This is
comparable to the typical elements of mocking frameworks that allow you to assert
on invocations, counts of invocations, and absence.)

Table 3.1 SendingActor Typesm

Actor Description

MutatingCopyActor The actor creates a mutated copy and sends the copy to
the next actor, which is the case that we have seen just
now.

ForwardingActor The actor forwards the message it receives, it does not
change it at all.

TransformingActor The actor creates a different type of message from the
message that it receives.

SequencingActor The actor creates many messages based on one
message it receives and sends the new messages one
after the other to another actor.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

61

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 3.10 FilteringActor test

Send a couple of events, including duplicates
Receive messages until the case statement does not match anymore
Assert that the duplicates are not in the result

The test uses a method to collect the messages that thereceiveWhile

testActor receives until the case statement matches. In the test the doesEvent(6)

not match the pattern in the case statement, which defines that all Events with an id
less than or equal to 5 are going to be matched, popping us out of the while loop.
The method returns the collected items as they are returned inreceiveWhile

the partial function as a list, which is not allowed to have any duplicates. Now let's
write the FilteringActor that will guarantee this part of the specification:

"filter out particular messages" in {
 import FilteringActorProtocol._
 val props = Props(new FilteringActor(testActor, 5))
 val filter = system.actorOf(props, "filter-1")

 filter ! Event(1)
 filter ! Event(2)
 filter ! Event(1)
 filter ! Event(3)
 filter ! Event(1)
 filter ! Event(4)
 filter ! Event(5)
 filter ! Event(5)
 filter ! Event(6)

 val eventIds = receiveWhile() {
 case Event(id) if id <= 5 => id
 }

 eventIds must be(List(1, 2, 3, 4, 5))
 expectMsg(Event(6))
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

62

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 3.11 FilteringActor implementation

A max size for the buffer is passed into the constructor
A vector of last messages is kept
The event is sent to the next actor if it is not found in the buffer
The oldest event in the buffer is discarded when the max buffersize is reached

The above keeps a buffer of the last messages that itFilteringActor

received in a and adds every received message to it if it does not alreadyVector

exist in the list. Only messages that are not in the buffer are sent to the
 . The oldest message that was received is discarded when a max nextActor

 is reached to prevent the list from growing toobufferSize lastMessages

large and possibly causing us to run out of space.
The method can also be used for testing a SequencingActor;receiveWhile

you could assert that the sequence of messages that is caused by a particular event
is as expected. Two methods for asserting messages that might come in handy
when you need to assert a number of messages are and ignoreMsg

 . takes a partial function just like the expectNoMsg ignoreMsg

 method, only instead of asserting the message it ignores anyexpectMsgPF

object FilteringActorProtocol {
 case class Event(id: Long)
}

class FilteringActor(nextActor: ActorRef,

 bufferSize: Int) extends Actor {
 import FilteringActorProtocol._

 var lastMessages = Vector[Event]()
 def receive = {
 case msg: Event =>
 if (!lastMessages.contains(msg)) {
 lastMessages = lastMessages :+ msg

 nextActor ! msg
 if (lastMessages.size > bufferSize) {
 // discard the oldest

 lastMessages = lastMessages.tail
 }
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

63

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

message that matches the pattern. This can come in handy if you are not interested
in many messages, but only want to assert that particular messages have been sent
to the testActor. The asserts that no message has been sent to theexpectNoMsg

testActor for a certain amount of time, which we could have also used in between
the sending of duplicate messages in the FilteringActor test. The test in 3.12 shows
an example of using .expectNoMsg

Listing 3.12 FilteringActor implementation

Since the has to wait for a timeout to be sure that no messageexpectNoMsg

was received, the above test will run more slowly.
As we've seen the TestKit provides a testActor that can receive messages,

which we can assert with expectMsg and other methods. A TestKit has only one
testActor and since the TestKit is a class that you need to extend, how would you
test an actor that sends messages to more than one actor? The answer is the

 class. The class is very much like the TestKit, only youTestProbe TestProbe

can use this class without having to extend from it. Simply create a TestProbe with
 and start using it. The TestProbe will be used quite often in theTestProbe()

tests that we are going to write in chapter 8, which covers topics like load
balancing and routing.

"filter out particular messages using expectNoMsg" in {
 import FilteringActorProtocol._
 val props = Props(new FilteringActor(testActor, 5))
 val filter = system.actorOf(props, "filter-2")
 filter ! Event(1)
 filter ! Event(2)
 expectMsg(Event(1))
 expectMsg(Event(2))
 filter ! Event(1)
 expectNoMsg
 filter ! Event(3)
 expectMsg(Event(3))
 filter ! Event(1)
 expectNoMsg
 filter ! Event(4)
 filter ! Event(5)
 filter ! Event(5)
 expectMsg(Event(4))
 expectMsg(Event(5))
 expectNoMsg()
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

64

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Remember the HelloWorld example? It does just one thing: its receivesGreeter

a message and outputs it to the console. The allows usSideEffectingActor

to test scenarios such as these: where the effect of the action is not directly
accessible. While many cases fit this description, this one sufficiently illustrates the
final means of testing for an expected result.

Listing 3.13 Testing HelloWorld

Create a system with a configuration that attaches a test event listener
Use the testSystem from the Greeter01Test object
Single threaded environment
Intercept the log messages that were logged

The is tested by inspecting the log messages that it writes using the Greeter

 trait. The testkit module provides a ActorLogging TestEventListener

3.2.3 SideEffectingActor Example

import Greeter01Test._

class Greeter01Test extends TestKit(testSystem)
 with WordSpec
 with MustMatchers
 with StopSystemAfterAll {

 "The Greeter" must {
 "say Hello World! when a Greeting("World") is sent to it" in {
 val dispatcherId = CallingThreadDispatcher.Id

 val props = Props[Greeter].withDispatcher(dispatcherId)
 val greeter = system.actorOf(props)
 EventFilter.info(message = "Hello World!",

 occurrences = 1).intercept {
 greeter ! Greeting("World")
 }
 }
 }
}

object Greeter01Test {

 val testSystem = {
 val config = ConfigFactory.parseString(
 """akka.event-handlers = ["akka.testkit.TestEventListener"]""")
 ActorSystem("testsystem", config)
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

65

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

that you can configure to handle all events that are logged. The ConfigFactory

can parse a configuration file from a String, in this case we only override the event
handlers list.

The test is run in a single threaded environment because we want to check that
the log event has been recorded by the when the greeterTestEventListener

is sent the "World" . We use an object, which can beGreeting EventFilter

used to filter log messages. in this case we filter out the expected message, which
should only occur once. The filter is applied when the intercept code block is
executed, which is when we send the message.

The above example of testing a SideEffectingActor shows that asserting some
interactions can get complex quite quickly. In a lot of situations it is easier to adapt
the code a little bit so that it is easier to test. Clearly, if we pass the listeners to the
class under test, we don't have to do any configuration or filtering, we will simply
get each message our Actor under test produces. The below example shows an
adapted Actor which can be configured to send a message to a Greeter listener

actor whenever a greeting is logged:

Listing 3.14 Simplifying testing of the Greeting Actor with a listener

The constructor takes an optional listener, default set to None
optionally sending to the listener

The actor is adapted so that it takes an ,Greeter02 Option[ActorRef]

which is default set to None. After it successfully logs a message, it sends a
message to the listener if the Option is not empty. When the actor is used normally
without specifying a listener it runs as usual. Below is the updated test for this

 actor.Greeter02

class Greeter02(listener: Option[ActorRef] = None)
 extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) =>
 val message = "Hello " + who + "!"
 log.info(message)

 listener.foreach(_ ! message)
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

66

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 3.15 Simpler Greeting Actor test

Set the listener to the testActor
Assert the message as usual

As you can see the test has been greatly simplified. We simply pass in a
 into the constructor, and assert the messageSome(testActor) Greeter02

that is sent to the testActor as usual.
In the next section we are going to look at two-way messages, and how these

can be tested.

We have already seen an example of two-way messages in the multi-threaded test
for the SendingActor style actor, where we used a message thatGetState

contained an . We simply called the operator on this ActorRef toActorRef !

respond to the GetState request. As shown before the method has an implicittell

 reference.sender

Two-way messages are quite easy to test in a black box fashion, a request
should result in a response, which you can simply assert. In the following test we
will test an , an actor that echoes any request back in a response.EchoActor

class Greeter02Test extends TestKit(ActorSystem("testsystem"))
 with WordSpec
 with MustMatchers
 with StopSystemAfterAll {

 "The Greeter" must {
 "say Hello World! when a Greeting("World") is sent to it" in {

 val props = Props(new Greeter02(Some(testActor)))
 val greeter = system.actorOf(props, "greeter02-1")
 greeter ! Greeting("World")

 expectMsg("Hello World!")
 }
 "say something else and see what happens" in {
 val props = Props(new Greeter02(Some(testActor)))
 val greeter = system.actorOf(props, "greeter02-2")
 system.eventStream.subscribe(testActor, classOf[UnhandledMessage])
 greeter ! "World"
 expectMsg(UnhandledMessage("World", system.deadLetters, greeter))
 }
 }
}

3.3 Two-way messages

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

67

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 3.16 Testing Echoes

Call tell with the testActor as the sender
Assert the message as usual

We just call the method with an explicit , which the EchoActortell sender

will use to send the response back to. The EchoActor stays exactly the same. It just
sends a message back to the sender.

Listing 3.17 Echo Actor

The EchoActor reacts exactly the same way whether the pattern was usedask

or of the method; the above is the preferred way to test two-way messages.tell

Our journey in this section has taken us through actor testing idioms that are
offered by Akka's TestKit. They are all serving the same goal: making it easy to
write unit tests that need access to results that can be asserted upon. The testkit
provides both methods for single-threaded and multi-threaded testing. We can even
'cheat' a little and get at the underlying actor instance during testing. Categorizing
actors by how they interact with others gives us a template for how to test the
actor, which was shown for the SilentActor, SendingActor and SideEffectingActor
types. In most cases the easiest way to test an actor is to pass a testActor reference
to it, which can be used to assert expectations on the messages that are sent out by
the actor under test. The testActor can be used to take the place of a sender in a
request response or it can just act like the next actor that an actor is sending

"Reply with the same message it receives without ask" in {
 val echo = system.actorOf(Props[EchoActor], "echo2")

 echo.tell("some message", testActor)

 expectMsg("some message")
}

class EchoActor extends Actor {
 def receive = {
 case msg =>
 sender ! msg
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

68

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

messages to. Finally, we saw that in many cases it makes sense to prepare an actor
for testing, especially if the actor is 'silent,' in which case it is beneficial to add an
optional listener to the actor.

Test-Driven Development is fundamentally a way of working. Akka was designed
to support that approach. Since the bedrock of regular unit testing is to invoke a
method and get a response that can be checked for an expected result, we had to
look at how to adopt a new mindset to go along with our message-based,
asynchronous style. The TestToolkit provides us with those tools.

Actors also bring some new powers to the seasoned TDD programmer:

Actors embody behavior, tests are fundamentally a means of checking
behavior

Message-based tests are cleaner: only immutable state goes back and
forth, precluding the possibility of tests corrupting the state they are testing

With the understanding of the core test actors, you can now write unit
tests of actors of all kinds

As we go forward, developing additional examples, we will see these actors
again, and the best aspects of TDD are preserved in Akka.

In the next chapter we are going to look at how actor hierarchies are formed and
how supervision strategies and lifecycle monitoring can be used to build fault
tolerant systems.

3.4 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

69

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

4
In this chapter

Self healing systems
Let it crash
Actor life cycle
Supervision
Fault recovery strategies

This chapter covers the tools Akka provides to make applications more
resilient. The first section describes the principle, including supervision,let it crash
monitoring and actor lifecycle features. Of course, we will look at some examples
that show how to apply these to typical failure scenarios.

Fault tolerance

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

70

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Let's first start with a definition of what we mean when we say a system is fault
tolerant, and why we would write code to embrace the notion of failure. In an ideal
world a system is always available and is able to guarantee that it will be
successful with each undertaken action. The only two ways to this ideal are use
components that can never fail or account for every single fault by providing a
recovery action, that is, of course also assured of success. In most architectures,
what we have instead is a catchall mechanism that will terminate as soon as an
uncaught failure arises. Even if an application attempts to provide recovery
strategies, testing them is hard, and being sure that the recovery strategies
themselves work adds another layer of complexity. In the procedural world, each
attempt to do something requires a return code that is checked against a list of
possible faults. Exception handling came along and quickly became a fixture of
modern languages, promising a less onerous path to providing the various required
means of recovery, but while it has succeeded in yielding code that doesn't have to
have fault checks on every line, the propagation of faults to ready handlers has not
significantly improved.

The idea of a system that is free of faults sounds great in theory but the sad fact
is that building one that is also highly available and distributed is simply not
possible for any non-trivial system. The main reason for this is that large parts of
any non-trivial system are not under our control and these parts can break. Then
there is the prevalent problem of responsibility: as collaborators interact, using
many times shared components (remember our example from the first chapter), it's
not clear who is responsible for which possible faults. A good example of
potentially unavailable resources is the network: it can go away at any time or be
partly available, and if we want to continue operation, we will have to find some
other way to continue communicating, or maybe disable communication for a
while. We might depend on third party services that can misbehave, fail or simply
be sporadically unavailable. The servers our software runs on can fail or can be
unavailable or even experience total hardware failure. You obviously cannot
magically make a server reappear out of it's ashes or automatically fix a broken
disk to guarantee writing to it. This is why let it crash was born in the rack and
stack world of the telcos where failed machines were common enough to make
their availability goals impossible without a plan that accounted for them.

Since we cannot prevent all failures from happening we will have to prepared to
adopt a strategy, keeping the following in mind:

4.1 What is fault tolerance (and what it isn't)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

71

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

• Things break. The system needs to be fault tolerant so that it can stay available
and continue to run. Recoverable faults should not trigger catastrophic failures.

• In some cases it is acceptable if the most important features of the system stay
available as long as possible, while in the mean time failing parts are stopped and
cut off from the system so that they cannot interfere with the rest of the system,
producing unpredictable results.

• In other cases certain components are so important that they need to have active
backups (probably on a different server or using different resources) that can kick
in when the main component fails so that the unavailability is quickly remedied.

• A failure in certain parts of the system should not crash the entire system so we
need a way to isolate particular failures that we can deal with later.

Of course, the Akka toolkit does not include a fault tolerance silver bullet.
We will still have to handle specific failures, but will be able to do it in a
cleaner, more application-specific way. The following Akka features will
enable us to build the fault tolerant behavior we need:

Table 4.1mAvailable Fault Avoidance Strategies

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

72

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Fault
containment
or isolation

a fault should be contained to a part of the system and not escalate to a total
crash.

Structure isolating a faulty component means that some structure needs to exist to
isolate it from; the system will need a defined structure in which active parts
can be isolated.

Redundancy a backup component should be able to take over when a component fails.

Replacement If a faulty component can be isolated we can also replace it in the structure.
The other parts of the system should be able to communicate with the
replaced component just as they did before with the failed component.

Reboot If a component gets into an incorrect state, we need to have the ability to get
it back to a defined initial state. The incorrect state might be the reason for
the fault and it might not be possible to predict all the incorrect states the
component can get into because of dependencies out of our control.

Component
Lifecycle

a faulty component needs to be isolated and if it cannot recover it should be
terminated and removed from the system or re-initialized with a correct
starting state. Some defined lifecycle will need to exist to start, restart and
terminate the component.

Suspend When a component fails we would like all calls to the component to be
suspended until the component is fixed or replaced so that when it is, the new
component can continue the work without dropping a beat. The call that was
handled at the time of failure should also not disappear, it could be critical to
our recovery, and further, it might contain information that is critical to
understanding why the component failed. We might want to retry the call
when we are sure that there was another reason for the fault.

Separation
of Concerns

It would be great if the fault recovery code could be separated from the
normal processing code. Fault recovery is a cross cutting concern in the
normal flow. A clear separation between normal flow and recovery flow will
simplify the work that needs to be done. Changing the way the application
recovers from faults will be simpler if we have achieved this clean separation.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

73

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

But wait a minute, you might say, why can't we just use plain old objects and
exceptions to recover from failures? Normally exceptions are used to back out of a
series of actions to prevent an inconsistent state instead of recovering from a
failure in the sense we have discussed so far. But let's see how hard it would be to
add fault recovery using exception handling and plain old objects in the next
section.

Let's look at an example of an application that receives logs from multiple threads,
'parses' interesting information out of the files into row objects and writes these
rows into some database. Some file watcher process keeps track of added files and
informs many threads in some way to process the new files. The below figure gives
an overview of the application and highlights the part that we will zoom into ("in
scope"):

Figure 4.1 Process logs application

If the database connection breaks we want to be able to create a new connection
to another database and continue writing, instead of backing out. If the connection
starts to malfunction we might want to shut it down so that no part of the
application uses it anymore. In some cases we want to just reboot the connection,
hopefully to get rid of some temporary bad state in it. Pseudo code will be used to
illustrate where the potential problem areas are. We'll look at the case where we
would like to just get a new connection to the same database using standard
exception handling.

First, all objects are setup that will be used from the threads. After setup, they
will be used to process the new files that the file watcher finds. We setup a
database writer that uses a connection. The below figure shows how the writer is
created.

4.1.1 Plain old objects and exceptions

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

74

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 4.2 Create a writer

The dependencies for the writer are passed to the constructor as you would
expect. The database factory settings, including the different urls, are passed in
from the thread that creates the writer. Next we setup some log processors; each
gets a reference to a writer to store rows, as shown in the figure below.

Figure 4.3 Create log processors

The below figure shows how the objects call each other in this example
application:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

75

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 4.4 Call stack while processing log files

The above flow gets called from many threads to simultaneously process files
found by the file watcher. The below figure shows a call stack where a

 is thrown, which indicates that we shouldDbBrokenConnectionException

switch to another connection. The details of every method are omitted, the diagram
only shows where an object eventually calls another object:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

76

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 4.5 Call stack while processing log files

Instead of just throwing the exception up the stack, we would like to recover
from the and replace the brokenDbBrokenConnectionException

connection with a working one. The first problem we face is that it is hard to add
the code to recover the connection in a way that does not break the design. Also,
we don't have enough information to recreate the connection: we don't know which
lines in the file have already been processed successfully and which line was being
processed when the exception occurred.

Making both the processed lines and the connection information available to all
objects would break our simple design and violate some basic best practices like
encapsulation, inversion of control, and single responsibility to name a few. (Good
luck at the next code peer review with your clean coding colleagues!) We just want
the faulty component replaced. Adding recovery code directly into the exception
handling will entangle the functionality of processing log files with database
connection recovery logic. Even if we find a spot to recreate the connection, we
would have to be very careful that other threads don't get to use the faulty
connection while we are trying to replace it with a new one because otherwise
some rows would be lost. There are three connection pools in the Java world, after
nearly two decades, only one even has a working implementation of dead

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

77

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

connection removal on another thread. This is clearly not easy with our existing
tools.

Also, communicating exceptions between threads is not a standard feature, you
would have to build this yourself. Let's look at the failure tolerant requirements to
see if this approach even stands a chance.

Fault isolation; Isolation is made difficult by the fact that many threads can throw
exceptions at the same time. We'll have to add some kind of locking mechanism. It is
hard to really remove the faulty connection out of the chain of objects, the application
would have to be rewritten to get this to work. There is no standard support for cutting
off the use of the connection in the future, so this needs to be be built into the objects
manually with some level of indirection.
Structure; The structure that exists between objects is very simple and direct and by
default does not provide any support for simply taking out an object. You would have to
create a more involved structure yourself (again, with a level of indirection between the
objects).
Redundancy; When an exception is thrown it goes up the call stack. You might miss the
context for making the decision which redundant component to use or lose the context of
which input data to continue with, as seen in above example.
Replacement; There is no default strategy in place to replace an object in a call stack, you
would have to find a way to do it yourself. There are dependency injection frameworks
that provide some features for this, but if any object simply referred directly to the old
instance instead of through the level of indirection you are in trouble. If you intend to
change an object in place you better make sure it works for multi-threaded access.
Reboot; Similar to replacement, getting an object back to an initial state is not
automatically supported and takes another level of indirection that you will have to build.
All the dependencies of the object will have to be reintroduced as well. If these
dependencies also need to be rebooted (lets say the log processor can also throw some
recoverable error), things can get quite complicated with regard to ordering.
Component lifecycle; an object only exists after it has been constructed or it is garbage
collected and removed from memory. Any other mechanism is something you will have
to build yourself.
Suspend; The input data or some of its context is lost or not available when you catch an
exception and throw it up the stack. You would have to build something yourself to
buffer the incoming calls while the error has not been resolved. If the code is called from
many threads you need to add locks to prevent multiple exceptions from happening at the
same time. And you would need to find a way to store the associated input data to retry
again later.
Separation of concerns; The exception handling code is interwoven with the processing
code and cannot be defined independently of the processing code.

So that's not looking very promising, getting everything to work correctly is
going to be complex and a real pain. It looks like there are some fundamental
features missing for adding fault tolerance to our application in an easy way:

Recreating objects and their dependencies and replacing these in the application structure

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

78

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

is not available as a first-class feature.
Objects communicate with each other directly so it is hard to isolate them.
The fault recovery code and the functional code are tangled up with each other.

Luckily we have a simpler solution. We have already seen some of the actor
features that can help simplify these problems. Actors can be (re)created from

 objects, are part of an actor system and communicate through actorProps

references instead of direct references. In the next section, we will look at how
actors provide a way to untangle the functional code from the fault recovery code
and how the actor life-cycle makes it possible to suspend and restart actors
(without invoking the wrath of the concurrency gods) in the course of recovering
from faults.

In the previous section we learned that building a fault tolerant application with
plain old objects and exception handling is quite a complex task. Lets look at how
actors simplify this task. So what should happen when an Actor processes a
message and encounters an exception? We already discussed why we don't want to
just graft recovery code into the operational flow, so catching the exception inside
an actor where the business logic resides, is out.

Instead of using one flow to handle both normal code and recovery code Akka
provides two separate flows; one for normal logic and one for fault recovery logic.
The normal flow consists of actors that handle normal messages, the recovery flow
consists of actors that monitor the actors in the normal flow. Actors that monitor
other actors are called supervisors. The below figure shows a supervisor
monitoring an actor.

4.1.2 Let it crash

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

79

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 4.6 Normal and recovery flow

Instead of catching exceptions in an actor, we will just let the actor crash. The
actor code only contains normal processing logic and no error handling or fault
recovery logic, so its effectively not part of the recovery process, which keeps
things much clearer. The mailbox for a crashed actor is suspended until the
supervisor in the recovery flow has decided what to do with the exception. So how
does an actor become a supervisor? Akka has chosen to enforce parental

, meaning that any actor that creates actors automatically becomes thesupervision
supervisor of those actors. A supervisor does not 'catch exceptions,' rather it
decides what should happen with the crashed actors that it supervises based on the
cause of the crash. The supervisor does not try to fix the actor or its state. It simply
renders a judgment on how to recover, then triggers the corresponding strategy.
The supervisor has 4 options when deciding what to do with the actor:

Restart; the actor must be recreated from its Props. after it is restarted (or rebooted if you
will) the actor will continue to process messages. Since the rest of the application uses an
ActorRef to communicate with the actor the new actor instance will automatically get the
next messages.
Resume; the same actor instance should continue to process messages, the crash is
ignored.
Stop; the actor must be terminated. It will no longer take part in processing messages.
Escalate; the supervisor does not know what to do with it and escalates the problem to its
parent, which is also a supervisor.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

80

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The below figure gives an example of the strategy that we could choose when
we build the log processing application with actors. The supervisor is shown to
take one of the possible actions when a particular crash occurs:

Figure 4.7 Normal and recovery flow in the logs processing application

The above figure shows a solution for making the log processing fault tolerant,
at least for the broken connection problem. When the

occurs the dbWriter actor crashes and isDbBrokenConnectionException

replaced with a recreated dbWriter actor.
We will need to take some special steps to re-cover the failed message, which

we will discuss in the details of how to implement a Restart in code later. Suffice it
to say that in most cases you do not want to re-process a message because it
probably caused the error in the first place. An example of that would be the case
of the logProcessor encountering a corrupt file: reprocessing corrupt files could
end up in what is called a poisoned mailbox, no other message will ever get
processed because the corrupting message is failing over and over again. For this
reason Akka chooses not to provide the failing message to the mailbox again after
a restart, but there is a way to do this yourself if you are absolutely sure that the
message did not cause the error, which we will discuss later. The good news is, if a
job is processing tens of thousands of messages, and one is corrupt, default
behavior will result in all the other messages being processed normally; the one
corrupt file will not cause a catastrophic failure and erase all the other work done
to that point (and prevent the remainder from occurring).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

81

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The below figure shows the how a crashed dbWriter actor instance is replaced
with a fresh instance when the supervisor chooses to restart.

Figure 4.8 Handling the DbBrokenConnectionException with a restart

Let's recap the benefits of the let it crash approach:

Fault isolation; A supervisor can decide to terminate an actor. The actor is removed from
the actor system.
Structure; the actor system hierarchy of actor references makes it possible to replace actor
instances without other actors being affected.
Redundancy; An actor can be replaced by another. In the example of the broken database
connection the fresh actor instance could connect to a different database. The supervisor
could also decide to stop the faulty actor and create another type instead. Another option
would be to route messages in a load balanced fashion to many actors, which will be
discussed in chapter 8.
Replacement; An actor can always be recreated from its Props. A supervisor can decide
to replace a faulty actor instance with a fresh one, without having to know any of the
details for recreating the actor.
Reboot; This can be done through a restart.
Component lifecycle; An actor is an active component. It can be started, stopped and
restarted. In the next section we will go into the details of how the actor goes through its
life-cycle.
Suspend; When an actor crashes its mailbox is suspended until the supervisor decides
what should happen with the actor.
Separation of concerns; The normal actor message processing and supervision fault
recovery flows are orthogonal and can be defined and evolve completely independently
of each other.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

82

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

1.
2.
3.

In the next sections we will get into the coding details of the actor life-cycle and
supervision strategies.

We have seen that an actor can restart to recover from a failure. But how can we
correct the actor state when the actor is restarting? To answer that question we
need to take a closer look at the actor life cycle. An actor is automatically started
by Akka when it is created. The actor will stay in the Started state until it is
stopped. From that moment the actor is in the Terminated state. When the actor is
terminated it can't process messages anymore and will be eventually garbage
collected. When the actor is in a Started state it can be restarted to reset the internal
state of the actor. As we discussed in the previous section the actor instance is
replaced by a fresh actor instance. The restart can happen as many times as
necessary. During the life cycle of an actor there are three types of events:

The actor is created and started, for simplicity we will refer to this as the event.Start
The actor is restarted on the event.Restart
The actor is stopped by the event.Stop

There are several hooks in place in the trait which are called when theActor

events happen to indicate a life-cycle change. We can add some custom code in
these hooks that can be used to recreate specific state in the fresh actor instance, to
process the message that failed before the restart, or to cleanup some resources for
instance. In the next sections we will look at the three events and how the hooks
can be used to run custom code. The order in which the hooks occur is guaranteed
although they are called asynchronously by Akka.

An actor is created and automatically started with the method. Top levelactorOf

actors are created with the actorOf method on the . A parent actorActorSystem

creates a child actor using the on its .actorOf ActorContext

4.2 Actor life-cycle

4.2.1 Start event

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

83

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 4.9 Starting an actor

After the instance is created the actor is going to be started by Akka. The
hook is called just before the actor is started. To use this trigger wepreStart

have to override the method.preStart

Listing 4.1 preStart life cycle hook

This hook can be used to set the initial state of the actor.

The next life-cycle event that we will discuss is the stop event. We will get back to
the restart event later because its hooks have dependencies on the start and stop
hooks. The stop event indicates the end of the actor life-cycle and occurs once,
when an actor is stopped. An actor can be stopped using the method on the stop

 and objects, or by sending a ActorSystem ActorContext PoisonPill

message to an actor.

override def preStart() {
 println("preStart")
}

do some work

4.2.2 Stop event

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

84

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 4.10 Stop an actor

The postStop hook is called just before the actor is terminated. When the actor
is in the Terminated state the actor doesn't get any new messages to handle. The
postStop method is the counterpart of the preStart hook.

Listing 4.2 postStop life cycle hook

Normally this hook implements the opposite function of the preStart and
releases resources created in the preStart method and possibly stores the last state
of the actor somewhere outside of the actor in the case that the next actor instance
needs it. A stopped actor is disconnected from its ActorRef. After the actor is
stopped, the is redirected to the ActorRef of the actorActorRef deadLetters

system, which is a special ActorRef that receives all messages that are sent to dead
actors.

During the life-cycle of an actor it is possible that its supervisor will decide that the
actor has to be restarted. This can happen more than once, depending on the
number of errors that occur. This event is a little bit more complex than the start or
stop events. This is because the instance of an actor is replaced.

override def postStop() {
 println("postStop")
}

do some work

4.2.3 Restart event

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

85

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 4.11 Restarting an actor

When a restart occurs the method of the crashed actor instancepreRestart

is called. In this hook the crashed actor instance is able to store its current state,
just before it is replaced by the new actor instance.

Listing 4.3 preRestart life cycle hook

exception which was thrown by the actor
when the error occurred within the receive function than this is the message which
the actor was trying to process
WARNING call the super implementation

Be careful when overriding this hook. The default implementation of the
method stops all the child actors of the actor and then calls the preRestart

 hook. If you forget to call this defaultpostStop super.preRestart

behavior will not occur. Remember that actors are (re)created from a Props

object. The object eventually calls the constructor of the actor. The actorProps

override def preRestart(reason: Throwable,

 message: Option[Any]) {
 println("preRestart")

 super.preRestart(reason, message)
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

86

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

can create child actors inside its constructor. If the children of the crashed actor
would not be stopped we could end up with more and more child actors when the
parent actor is restarted.

It's important to note that a restart does not stop the crashed actor in the same
way as the stop methods (described above in the stop event). As we will see later it
is possible to monitor the death of an actor. A crashed actor instance in a restart
does not cause a message to be sent for the crashed actor. TheTerminated

fresh actor instance, during restart, is connected to the same theActorRef

crashed actor was using before the fault. A stopped actor is disconnected from its
 and redirected to the deadLetters ActorRef as described by the stopActorRef

event. What both the stopped actor and the crashed actor have in common is that
by default the postStop is called after they have been cut off from the actor system.

The method takes two arguments: the reason for the restart andpreRestart

optionally the message that was being processed when the actor crashed. The
supervisor can decide what should (or can) be stored to enable state restoration as
part of restarting. And of course this can't be done using local variables because
after restarting a fresh actor instance will take over processing. One solution for
keeping state beyond the death of the crashed actor is for the supervisor to send a
message to the actor (will go in its mailbox). (Done by sending a message to its
own , which is available on the actor instance through the ActorRef self

value.) Other options are writing to something outside of the actor, like a database
or the file system. This all depends completely on your system and the behavior of
the actor.

Which brings us back to the log processing example, where we did not want to
lose the Row message in the case of a dbWriter crash. The solution in that case
could be to send the failed Row message to the self ActorRef so it would be
processed by the fresh actor instance. One issue to note with this approach is that
by sending a message back onto the mailbox, the order of the messages on the
mailbox is changed. The failed message is pushed off the top of the mailbox and
will be processed later than other messages that have been waiting in the mailbox.
In the case of the dbWriter this is not an issue, but keep this in mind when using
this technique.

After the preStart hook is called a new instance of the actor class is created and
therefore the constructor of the actor is executed, through the object. AfterProps

that the hook is called on this fresh actor instance.postRestart

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

87

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 4.4 postRestart life cycle hook

exception which was thrown by the actor
WARNING call the super implementation

Here too, we start with a warning. The super implementation of the
is called because this will trigger the function bypostRestart preStart

default. The can be omitted if you are certain that yousuper.postRestart

don't want the to be called when restarting, in most cases though thispreStart

is not going to be the case. The and are called by defaultpreStart postStop

during a restart and they are called during the start and stop events in the lifecycle,
so it makes sense to add code there for initialization and cleanup respectively,
killing two birds with one stone.

The argument is the same as received in the method.reason preRestart

In the overridden hook, the actor is free to restore itself to some last known correct
state, for example by using information stored by the function.preRestart

When we put all the different events together we get the full life-cycle of an actor.
In this case only one restart is shown

Figure 4.12 Full life cycle of an actor

override def postRestart(reason: Throwable) {
 println("postRestart")

 super.postRestart(reason)
}

4.2.4 Putting the Life cycle Pieces Together

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

88

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Putting all the life cycle hooks together in one Actor we can see the different
events occurring.

Listing 4.5 Example life cycle hooks

In the following 'test' we trigger all three life cycle events. The sleep just before
the stop makes sure that we can see the postStop happening.

Listing 4.6 Test life cycle triggers

The result of the test is:

 class LifeCycleHooks extends Actor
 with ActorLogging{
 System.out.println("Constructor")
 override def preStart() {println("preStart")}
 override def
 postStop() {println("postStop")}
 override def
 preRestart(reason: Throwable,
 message: Option[Any]) {
 println("preRestart")
 super.preRestart (reason, message)
 }
 override def postRestart(reason: Throwable) {
 println("postRestart")
 super.postRestart(reason)
 }
 def
 receive = {
 case "restart" => throw
 new
 IllegalStateException("force restart")
 case msg: AnyRef
 => println("Receive")
 }
 }

val testActorRef = system.actorOf(
 Props[LifeCycleHooks], "LifeCycleHooks")
testActorRef ! "restart"
testActorRef.tell("msg", testActor)
expectMsg("msg")
system.stop(testActorRef)
Thread.sleep(1000)

start actor

restart actor

stop actor

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

89

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 4.7 Output test life cycle hooks

Every actor goes through this life cycle; it is started and possibly restarted
several times until the actor is stopped and terminated. The , preStart

 , and hooks enable an actor topreRestart postRestart postStop

initialize and cleanup state and control and restore its state after a crash.

 Constructor

 preStart

 preRestart force restart

 postStop

 Constructor

 postRestart force restart

 preStart

 Receive
 postStop

Start event

Restart event

Stop Event

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

90

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The lifecycle of an actor can be monitored. The lifecycle ends when the actor is
terminated. An actor is terminated if the supervisor decides to stop the actor, or if
the method is used to stop the actor or if a message is sent tostop PoisonPill

the actor which indirectly causes the method to be called. Since the defaultstop

implementation of the method stops all the child actors that thepreRestart

actor has with the methods, these children are also terminated in the case ofstop

a restart. The crashed actor instance in a restart is not terminated in this sense. It is
removed from the actor system, but not by using the method, directly orstop

indirectly. This is because the ActorRef will continue to live on after the restart,
the actor instance has not been terminated but replaced by a new one. The

provides a method to monitor the death of an actor andActorContext watch

an to de-register as monitor. Once an actor calls the method onunwatch watch

an actor reference it becomes the monitor of that actor reference. A Terminated

message is sent to the monitor actor when the monitored actor is terminated. The

message only contains the of the actor that died. TheTerminated ActorRef

fact that the crashed actor instance in a restart is not terminated in the same way as
when an actor is stopped now makes sense because otherwise you would receive
many terminated messages whenever an actor restarts which would make it
impossible to differentiate the final death of an actor from a temporary restart. The
below example shows a actor that watches the lifecycle of aDbWatcher

dbWriter .ActorRef

Listing 4.8

Watch the lifecycle of the dbWriter
The actorRef of the terminated actor is passed in the Terminated message
The watcher logs the fact that the dbWriter was terminated

4.2.5 Monitoring the lifecycle

class DbWatcher(dbWriter: ActorRef) extends Actor with ActorLogging {

 context.watch(dbWriter)
 def receive = {

 case Terminated(actorRef) =>

 log.warning("Actor {} terminated", actorRef)
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

91

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

As opposed to supervision, which is only possible from parent to child actors,
monitoring can be done by any actor. As long as the actor has access to the

 of the actor that needs to be monitored, it can simply call ActorRef

, after which it will receive a Terminatedcontext.watch(actorRef)

message when the actor is terminated. Monitoring and supervision can be
combined as well and can be quite powerful as we will see in the next section.

We haven't discussed yet how a supervisor actually decides the fate of an actor,
if the child should be terminated, restarted or stopped. This will be be the main
topic of the next section, where we will get into the details of supervision. In the
next section we will first look at how the supervisor hierarchy is built up, followed
by the strategies that a supervisor can use.

In this section we are going to look at the details of supervision. We'll take the log
processing example application and show you different types of supervision
strategies. In this section we will focus on the supervisor hierarchy under the /user
actor path which will also be referred to as the . This is where alluser space
application actors live. There is a supervisor hierarchy above the path which/user
we will look at in chapter 4 regarding the shutdown sequence of an actor system.
First we will discuss various ways to define a hierarchy of supervisors for an
application and what the benefits and drawbacks are of each. Then we will look at
how supervisor strategies can be customized per supervisor.

The supervisor hierarchy is simply a function of the act of actors creating each
other: every actor that creates another is the supervisor of the created child actor.

The supervision hierarchy is fixed for the lifetime of a child. Once the child is
created by the parent it will fall under the supervision of that parent as long as it
lives, there is no such thing as adoption in Akka. The parent terminating a child
actor is the only way for the supervisor to cease its responsibilities. So it is
important to choose the right supervision hierarchy from the start in your
application, especially if you do not plan to terminate parts of the hierarchy to
replace them with completely different subtrees of actors.

The most dangerous actors (i.e. actors that are most likely to crash) should be as
low down the hierarchy as possible. Faults that occur far down the hierarchy can be

4.3 Supervision

4.3.1 Supervisor hierarchy

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

92

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

handled or escalated by more supervisors than a fault that occurs high up in the
hierarchy. When a fault occurs in the top level of the actor system, it could restart
all the top level actors or even shut down the actor system.

Lets look at the supervisor hierarchy of the log processing application as we
intended in the previous section. The below figure shows how the supervisors and
actors in the system communicate with each other and how the message flow from
a new file to a stored row in the database takes place:

Figure 4.13 Message flow and supervisors separate

In this setup we connect the actors directly to each other using ActorRefs.
Every actor knows the ActorRef of the next actor it sends messages to. The
ActorRefs need to stay alive and always need to refer to a next actor instance. If an
actor instance were to be stopped, the ActorRef would refer to the system's
deadLetters which would break the application. A Restart will need to be used in
all cases in the supervisor because of this so that the same ActorRef can be reused
at all times.

The picture also shows that the fileWatcherSupervisor needs to both create the
fileWatcher and the logProcessorsSupervisor. The fileWatcher needs a direct
reference to the logProcessor but the logProcessor is created by the
logProcessorsSupervisor at some point, so we can't just pass a logProcessor

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

93

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

ActorRef to the fileWatcher. We will have to add some messages that we can send
to the logProcessorsSupervisor to request an ActorRef to the logProcessor so that
we can give it to the fileWatcher. The benefit of this approach is that the actors talk
to each other directly and the supervisors only supervise and create instances. The
drawback is that we can only use Restart because otherwise messages will be sent
to the deadLetters and get lost. Parental supervision makes decoupling the
supervision from the message flow a bit harder. The logProcessor has to be created
by the logProcessorsSupervisor, which makes it more difficult to pass the
logProcessor ActorRef to the fileWatcher which in turn is created by the
fileWatcherSupervisor.

The next picture shows a different approach. The supervisors don't merely
create and supervise the actors in this case, they also forward all messages they
receive to their children. From the perspective of the supervised children nothing
has changed, forwarding is transparent because the original sender of the message
is preserved. For instance the logProcessor will think that it received a message
directly from the fileWatcher while in fact the logProcessorSupervisor forwarded
the message.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

94

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 4.14 Supervisors forward messages in the message flow

One benefit of this approach is that the supervisors provide a level of
indirection. A supervisor can terminate its children and spawn new ones without
the other actors knowing about it. Compared to the previous approach this does not
cause a gap in the message flow. This setup fits better in parental supervision
because a supervisor can directly create its child actors using Props objects. The
fileWatcherSupervisor for instance can create the logProcessingSupervisor and use
its ActorRef when creating a fileWatcher. The forwarding of all messages to the
children is how this approach works: the Actors continue to just send and receive
messages, completely oblivious of the faults occurring.

The forwarding supervisors approach is more flexible and simpler than the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

95

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

more separated approach because it fits in better with the idea of parental
supervision. The following example shows how the hierarchy is built up in an
application. In the next section we will look at the supervisors and the strategies
they use in detail.

Listing 4.9 Build the supervisor hierarchy

The top level supervisor for the log processing application is created. All actors
lower in the hierarchy will be created by the supervisors below this actor using the
Props objects that have been passed in.

The above code shows how the log processing application is built up. Props

objects are passed as recipes to the actors so that they can create their children
without knowing the details of the dependencies of the child actors. Eventually
only one top level actor is created using because we wantsystem.actorFor

the rest of the actors in the system to be created by supervisors, so all other actors
are created further down the line. In the next section we will revisit each actor and
we will see how they exactly create their children, but in essence they simply use
the object that they get passed and call Props context.actorOf(props)

to build a child actor, making it the supervisor of each new instance.
Now that we know a bit more about how to structure the supervision hierarchy

of an application, lets look at the different supervisor strategies that are available in
the next section.

object LogProcessingApp extends App {
 val sources = Vector("file:///source1/", "file:///source2/")
 val system = ActorSystem("logprocessing")
 // create the props and dependencies
 val con = new DbCon("http://mydatabase")
 val writerProps = Props(new DbWriter(con))
 val dbSuperProps = Props(new DbSupervisor(writerProps))
 val logProcSuperProps = Props(
 new LogProcSupervisor(dbSuperProps))
 val topLevelProps = Props(new FileWatchingSupervisor(
 sources,
 logProcSuperProps))

 system.actorOf(topLevelProps)
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

96

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

file:///source1/
file:///source2/
http://mydatabase
http://www.manning-sandbox.com/forum.jspa?forumID=835

The top level actors in an application are created under the path and/user
supervised by the . The default supervision strategy for the useruser guardian
guardian is to restart its children on any except for when it receivesException

internal exceptions that indicate that the actor was killed or when it failed during
initialization, at which point it will stop the actor in question. this strategy is
known as the . The strategy for the top level guardians can bedefault strategy
changed which we will look at in chapter 4. Every actor has a default supervisor
strategy which can be overridden by implementing the supervisorStrategy

method. There are two predefined strategies available in the
 object; the and the SupervisorStrategy defaultStrategy

 . As the name implies, the default strategy is default for allstoppingStrategy

actors, if you do not override the strategy an actor will always use the default. The
default strategy is defined as follows in the object:SupervisorStrategy

Listing 4.10 Default Supervisor Strategy

The Decider chooses a Directive by pattern matching on the exceptions
Stop, Start, Resume and Escalate are called Directives
A OneForOneStrategy is returned that uses the defaultDecider

The above code uses the which we have not discussedOneForOneStrategy

yet. Akka allows you to make a decision about the fate of the child actors in two
ways: all children share the same fate and the same recovery is applied to the lot,
or a decision is rendered and the remedy is applied only to the crashed actor. In
some cases you might want to only stop the child actor that failed. In other cases

4.3.2 Predefined strategies

 final val defaultStrategy: SupervisorStrategy = {
 def
 defaultDecider: Decider = { //

 case _: ActorInitializationException => Stop //

 case _: ActorKilledException => Stop
 case _: Exception =>
 Restart
 }
 OneForOneStrategy()(defaultDecider) //

 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

97

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

you might want to stop all child actors if one of them fails, maybe because they all
depend on a particular resource. If an exception is thrown that indicates that the
shared resource has failed completely it might be better to immediately stop all
child actors together instead of waiting for this to happen individually for every
child. The determines that child actors will not share theOneForOneStrategy

same fate, only the crashed child will be decided upon by the Decider. The other
option is to use an which uses the same decision for allAllForOneStrategy

child actors even if only one crashed. The next section will describe the
 and in more detail. The belowOneForOneStrategy AllForOneStrategy

example shows the definition of the stoppingStrategy which is defined in the
object:SupervisorStrategy

Listing 4.11 Stopping Supervisor Strategy

Decides to stop on any Exception.

The stopping strategy will stop any child that crashes on any Exception. These
built in strategies are nothing out of the ordinary. They are defined in the same way
you could define a supervisor strategy yourself. So what happens if an isError

thrown, like a or an by an actor that isThreadDeath OutOfMemoryError

supervised using the above stoppingStrategy? Any that is notThrowable

handled by the supervisor strategy will be escalated to the parent of the supervisor.
If a fatal error reaches all the way up to the user guardian, the user guardian will
not handle it since the user guardian uses the default strategy. In that case an
uncaught exception handler in the actor system causes the actor system to
shutdown. As we will see later in chapter 4 you can configure to exit the JVM
when this happens or to just shutdown the actor system. In most cases it is good
practice not to handle fatal errors in supervisors but instead gracefully shutdown
the actor system since a fatal error cannot be recovered from.

 final val stoppingStrategy: SupervisorStrategy = {
 def
 stoppingDecider: Decider = {
 case _: Exception => Stop //

 }
 OneForOneStrategy()(stoppingDecider)
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

98

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

1.
2.

3.
4.

Each application is going to have to craft strategies for each case that requires fault
tolerance. As we have seen in the previous sections there are four different types of
actions a supervisor can take to resolve a crashed actor. These are the building
blocks we will use. In this section, we will return to the log processing and build
the specific strategies it requires from these elements:

the child, ignore errors and keep processing with the same actor instanceResume
the child, remove the crashed actor instance and replace it with a fresh actorRestart

instance
the child, terminate the child permanentlyStop

the failure and let the parent actor decide what action needs to be takenEscalate

First we'll look at the exceptions that can occur in the log processing
application. To simplify the example a couple of custom exceptions are defined:

Listing 4.12 Exceptions in the log processing application

An unrecoverable Error that occurs when the disk for the source has crashed
An Exception that occurs when the log file is corrupt and cannot be processed.
An Exception that occurs when the database connection is broken.

The messages that the actors send to each other in the log processing
application are kept together in a protocol object:

4.3.3 Custom Strategies

@SerialVersionUID(1L)
class DiskError(msg: String)

 extends Error(msg) with Serializable

@SerialVersionUID(1L)
class CorruptedFileException(msg: String, val file: File)

 extends Exception(msg) with Serializable

@SerialVersionUID(1L)
class DbBrokenConnectionException(msg: String)

 extends Exception(msg) with Serializable

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

99

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 4.13 Log processing protocol

The log file that is received from the FileWatcher. The log Processor will process
these.
A processed line in the LogFile. The database writer will write these to a database
connection.

First lets start at the bottom of the hierarchy and look at the database writer that
can crash on a . When this exceptionDbBrokenConnectionException

happens the dbWriter should be restarted.

Listing 4.14 DbWriter crash

Writing to the connection could crash the actor.

The DbWriter is supervised by the DbSupervisor. The supervisor will forward
all messages to the DbWriter as we discussed in the supervisor hierarchy section.

object LogProcessingProtocol {
 // represents a new log file

 case class LogFile(file: File)
 // A line in the log file parsed by the LogProcessor Actor

 case class Line(time: Long, message: String, messageType: String)
}

class DbWriter(connection: DbCon) extends Actor {
 import LogProcessingProtocol._
 def receive = {
 case Line(time, message, messageType) =>
 connection.write(Map('time -> time,
 'message -> message,

 'messageType -> messageType))
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

100

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 4.15 DbWriter supervisor

Restart on DbBrokenConnectionException.
The dbWriter is created by the supervisor from a Props object.
All messages to the supervisor are forwarded to the dbWriter ActorRef.

If the database connection is broken, the database writer will be recreated with
a new connection from the Props object. The line that was being processed when
the DbBrokenConnectionException crashed the actor is lost. We will look at a
solution for this later in this section. The next actor up the hierarchy in the logs
application is the logProcessor. lets look at how this actor is supervised. The below
example shows the LogProcessor actor:

Listing 4.16 LogProcessor crash

Parsing the file could crash the actor.
Send the parsed lines to the dbSupervisor which in turn will forward the message
to the dbWriter.

The logProcessor crashes when a corrupt file is detected. In that case we do not
want to process the file any further, thus we ignore it. The logProcessor supervisor

class DbSupervisor(writerProps: Props) extends Actor {
 override def supervisorStrategy = OneForOneStrategy() {

 case _: DbBrokenConnectionException => Restart
 }

 val writer = context.actorOf(writerProps)
 def receive = {

 case m => writer forward (m)
 }
}

class LogProcessor(dbSupervisor: ActorRef)
 extends Actor with LogParsing {
 import LogProcessingProtocol._
 def receive = {
 case LogFile(file) =>

 val lines = parse(file)

 lines.foreach(dbSupervisor ! _)
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

101

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

resumes the crashed actor:

Listing 4.17 LogProcessor supervisor

Resume on CorruptedFileException. the Corrupted file is ignored.
The logProcessor is created by the supervisor from a Props object.
The database supervisor is created and supervised by this supervisor.
All messages to the supervisor are forwarded to the logProcessor ActorRef.

The log processing supervisor does not need to know anything about the
database supervisor dependencies, it simply uses the Props objects. If the log
processing supervisor decides on a restart, it can just recreate the actors from their
respective Props objects.

Up to the next actor in the hierarchy, the FileWatcher:

class LogProcSupervisor(dbSupervisorProps: Props)
 extends Actor {
 override def supervisorStrategy = OneForOneStrategy() {

 case _: CorruptedFileException => Resume
 }

 val dbSupervisor = context.actorOf(dbSupervisorProps)
 val logProcProps = Props(new LogProcessor(dbSupervisor))

 val logProcessor = context.actorOf(logProcProps)
 def receive = {

 case m => logProcessor forward (m)
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

102

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 4.18 FileWatcher crash

Registers on a source uri in the file watching API.
Sent by the file watching API when a new file is encountered.
Forwarding to the log processing supervisor.
The filewatcher kills itself when the source has been abandoned, indicated by the
file watching API to not expect more new files from the source.

We'll not get into the details of the File watching API, it is provided in a
FileWatchingAbilities trait. The FileWatcher does not take any 'dangerous' actions
and will continue to run until the file watching API notifies the FileWatcher that
the source of files is abandoned. The FileWatchingSupervisor monitors the
FileWatchers for termination and it also handles the DiskError error that could
have happened at any point lower in the supervisor hierarchy. Since the DiskError
is not defined lower down the hierarchy it will automatically be escalated. Since
this is un unrecoverable error, the FileWatchingSupervisor decides to stop all the
actors in the hierarchy when this occurs. An AllForOneStrategy is used so that if
any of the file watchers crashes with a DiskError all file watchers are stopped:

class FileWatcher(sourceUri: String,
 logProcSupervisor: ActorRef)
 extends Actor with FileWatchingAbilities {

 register(sourceUri)
 import FileWatcherProtocol._
 import LogProcessingProtocol._
 def receive = {

 case NewFile(file, _) =>

 logProcSupervisor ! LogFile(file)
 case SourceAbandoned(uri) if uri == sourceUri =>

 self ! PoisonPill
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

103

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 4.19 FileWatcher supervisor

Watch the file watchers for termination.
Stop the file watchers on a DiskError.
The Terminated message is received for a file watcher.
When all file watchers are terminated the supervisor kills itself.

The OneForOneStrategy and AllForOneStrategy will continue indefinitely by
default. Both strategies have default values for the constructor arguments

 and . In some cases you might like themaxNrOfRetries withinTimeRange

strategy to stop after a number of retries or when a certain amount of time has
passed. Simply set these arguments to the desired values. Once configured with the
constraints, the fault is escalated if the crash is not solved within the time range
specified or within a maximum number of retries. The below code gives an
example of an impatient database supervisor:

class FileWatchingSupervisor(sources: Vector[String],
 logProcSuperProps: Props)
 extends Actor {
 var fileWatchers: Vector[ActorRef] = sources.map { source =>
 val logProcSupervisor = context.actorOf(logProcSuperProps)
 val fileWatcher = context.actorOf(Props(
 new FileWatcher(source, logProcSupervisor)))

 context.watch(fileWatcher)
 fileWatcher
 }
 override def supervisorStrategy = AllForOneStrategy() {

 case _: DiskError => Stop
 }
 def receive = {

 case Terminated(fileWatcher) =>
 fileWatchers = fileWatchers.filterNot(w => w == fileWatcher)

 if (fileWatchers.isEmpty) self ! PoisonPill
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

104

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 4.20 Impatient database supervisor

Escalate the issue if the problem has not been resolved within 60 seconds or it has
failed to be solved within 5 restarts.

This mechanism can be used to prevent an actor from continuously restarting
without any effect.

Fault tolerance is one of the most exciting aspects of Akka, and it's a critical
component in the tookit's approach to concurrency. The philosophy of 'Let it Crash'
is not a doctrine of ignore the possible malfunctions that might occur, or the toolkit
will swoop in and heal any faults, in fact, it's sort of the opposite: the programmer
needs to anticipate recovery requirements, but the tools to deliver them without
meeting a catastrophic end (or having to write a ton of code) are simply
unparalleled. In the course of making our example log processor fault tolerant, we
saw that:

Supervision means we have a clean separation of recovery code

The Actor model's being built on messages means that even when an actor
goes away, we can still continue to function

We can resume, abandon, restart: the choice is ours, given the requirements
in each case

We can even escalate through the hierarchy of Supervisors

Again, Akka's philosophy shines through here: pull the actual operational needs
of the application up into the code, but do it in a structured way, with support from

class DbImpatientSupervisor(writerProps: Props) extends Actor {
 override def supervisorStrategy = OneForOneStrategy(
 maxNrOfRetries = 5,

 withinTimeRange = 60 seconds) {
 case _: DbBrokenConnectionException => Restart
 }
 val writer = context.actorOf(writerProps)
 def receive = {
 case m => writer forward (m)
 }
}

4.4 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

105

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

the toolkit. The result is that sophisticated fault tolerance that would be either
extremely difficult to achieve just running in a VM can be built and tested while
the code is being written without a tremendous amount of extra effort.

Now that we know how Akka can help us implement functionality in a
concurrent system by using actors and how to deal with errors within these actors,
we can start building an application. In the next section we will build several
different types of actor-based applications, and will look at how to provide services
like configuration, logging, and deployment.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

106

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

5
In this chapter

Futures
Composing Futures
Recovering from Errors inside Futures
Futures and Actors

In this chapter we're going to introduce Futures. The Future type that is
explained in this chapter was initially part of the Akka toolkit. Since Scala 2.10 it
is part of the standard Scala distribution. Like Actors, Futures are an important
asynchronous building block in the Akka toolkit. Both Actors and Futures are great
tools best used for different use cases. It's simply a case of the right tool for the
right job. We will start with describing the type of use case that Futures are best
suited for and work through some examples. Where Actors provide a mechanism
to build a system out of concurrent , Futures provide a mechanism to build aobjects
system out of concurrent .functions

Futures make it possible to combine the results of functions without ever
blocking or waiting. Exactly how you can achieve this will become clear in this
chapter. We will focus on showing you examples of how to best use Futures
instead of diving into the type system details that make many of the features of the
Future type possible.

You don't have to choose for Futures or Actors, they can be used together.
Akka provides common Actor and Future patterns which make it easy to work with
both. You will learn about the pitfalls that you need to be aware of when using
them together in the last section of this chapter.

Futures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

107

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

In the chapters so far we've learned a lot about Actors. To contrast the best use
cases for futures we will briefly think about use cases that be implementedcan
with Actors, but not without unwanted complexity.

Actors are great for processing many messages, capturing state and reacting
with different behavior based on the messages they receive. They are resilient

 that can live on for a long time even when problems occur, usingobjects
monitoring and supervision.

Futures are the tool to use when you would rather use and don't reallyfunctions
need objects to do the job. A is a placeholder for a function result that willFuture
be available at some point in the future. It is effectively an asynchronous result. It
gives us a way to reference the result that will eventually become available. The
below figure shows the concept:

Figure 5.1 A placeholder for an asynchronous function result

A Future is a read-only placeholder. It can not be changed from the outside. A
Future will contain a successful result or a failure once the asynchronous function
is completed. After completion the result inside the Future cannot change and can
be read many times, it will always give the same result. Having a placeholder for
the result makes it easier to combine many functions that are executed
asynchronously. It gives us a way to for instance call a web service without
blocking the current thread and process the response at a later time.

5.1 The use case for Futures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

108

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

NOTE This is not POJF (Plain Old Java Future)
To prevent any confusion, if you are familiar with the

 class in Java 7 you mightjava.util.concurrent.Future

think that the discussed in thisscala.concurrent.Future

chapter is just a Scala wrapper around this Java class. This is not
the case. The class requiresjava.util.concurrent.Future

polling and only provides a way to get to the result with a blocking
 method, while the Scala Future makes it possible to combineget

function results without blocking or polling as you will learn in this
chapter.

To make the example more concrete we're going to look at another use case for
the ticket system. We would like to create a web page with extra information about
the event and the venue. The ticket would simply link to this web page so that
customers can access it from their mobile device for instance. We might want to
show a weather forecast for the venue when it is on open air event, route planning
to the event around the time of the event (should I take public transport or drive by
car?), where to park, or show suggestions for similar future events that the
customer might be interested in. Futures are especially handy for , wherepipelining
one function provides the input for a next function. The TicketInfo service will find
related information for an event based on the ticket number. In all these cases the
services that provide a part of the information might be down and we don't want to
block on every service request while aggregating the information. If services do
not respond in time or fail, their information should just not be shown. To be able
to show the route to the event we will first need to find the event using the ticket
number, which is shown in the below figure.

Figure 5.2 Chain asynchronous functions

In this case and are both functions that dogetEvent getTraffic

asynchronous web service calls, executed one after the other. The
 web service call takes an argument. getTrafficInfo Event

 is called the moment the event becomes available in the getTrafficInfo

 result. This is very different from calling the Future[Event] getEvent

method and polling and waiting for the event on the current thread. We simply
©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
http://www.manning-sandbox.com/forum.jspa?forumID=835

109

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

define a flow and the function will be called ,getTrafficInfo eventually

without polling or waiting on a thread. The functions execute as soon as they can.
Limiting the amount of waiting threads is obviously because theya good thing
should instead be doing something useful.

The below figure shows a simple example where calling services
asynchronously is ideal. It shows a mobile device calling the TicketInfo service
which in the below case aggregates information from a weather and traffic service:

Figure 5.3 Aggregating results, sync vs async

Not having to wait for the weather service before calling the traffic service
decreases the latency of the mobile device request. The more services need to be
called the more dramatic the effect on latency will be since the responses can be
processed in parallel. The next figure shows another use case. In this case we
would like the fastest result of two competing weather services:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

110

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 5.4 Respond with the fastest result

Maybe weather service X is malfunctioning and times out on the request. In
that case you would not want to wait for this timeout but rather use the fast
response of weather service Y which is working as expected.

It's not as if these scenarios are impossible to execute with Actors. It's just that
we would have to do a lot of work for such a simple use case. Take the example of
aggregating weather and traffic information. Actors have to be created, messages
defined, receive functions implemented, as part of an ActorSystem. You would
have to think about how to handle timeouts, when to stop the actors and how to
create new actors for every web page request and combine the responses. The
below figure shows how Actors could be used to do this.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

111

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 5.5 Combine web service requests with Actors

We need two separate actors for the weather and traffic web service calls so that
they can be called in parallel. How the web service calls are combined will need to
be coded in the TicketInfo Actor for every specific case. That's a lot of work for
just calling two web services and combining the results. Note however that actors
are a better choice when fine-grained control over state is required or when actions
need to be monitored or possibly retried.

So although actors are a great tool they are not the 'be all and end all' on our
quest to never block again. In this case a tool specifically made for combining
function results would be a lot simpler.

There are some variations on the above use case where futures are the best tool
for the job. In general the use cases have one or more of the following
characteristics:

You do not want to block (wait on the current thread) to handle the result of a function.
Call a function once-off and handle the result at some point in the future.
Combine many once-off functions and combine the results.
Call many competing functions and only use some of the results, for instance only the
fastest response.
Call a function and return a default result when the function throws an exception so the
flow can continue.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

112

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Pipeline these kind of functions, where one function depends on or more results of other
functions.

In the next sections we're going to look at the details of implementing
TicketInfo service with futures. We will start with just calling one web service
asynchronously, after that we will combine many services in a pipeline of futures
and we'll look at error handling.

It's time to build the TicketInfoService and we're not explicitly going to sit on any
thread waiting idly by. Unit testing is the only case where blocking on a future
would be valid in our opinion because it can simplify validating results. And even
then delaying any blocking all the way to the end of the test case is preferred.
We're going to start with the TicketInfo service and try to execute the two steps in
the below figure so that we can provide traffic information about the route to the
event.

Figure 5.6 Get traffic information about the event

The first step is to get the event for the ticket number. The big difference
between calling a function synchronously and asynchronously is the flow in which
you define your program. The below listing shows an example of a synchronous
web service call to get the event for the ticket number.

Listing 5.1 Synchronous call

Create the request
Block main thread until the response is completed
Read the event value

The figure shows 3 lines of code executed on the main thread. The flow is very
simple, a function is called and its return value is immediately accessible on the

5.2 In the Future nobody blocks

 val request = EventRequest(ticketNr)

 val response:EventResponse = callEventService(request)

 val event:Event = response.event

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

113

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

same thread. The program obviously can't continue on the same thread before the
value is accessible. Scala expressions are by default strict and the above code does
not use any lazy evaluation. So every line in the above code has to produce a
complete value.

Lets see what we need to change to this synchronous web service call into an
asynchronous one. In the above case the is a blocking callcallEventService

to a web service, it needs to wait on a thread for the response. We'll first wrap the
 into a code block that is executed on a separate thread.callEventService

The below figure shows the change in the code:

Listing 5.2 Asynchronous call

Call code block asynchronously and return a Future Event result
this is run on a separate thread.
The event in the response can be accessed on the separate thread.

This asynchronous flow makes a small adjustment, it runs the
 in a separate thread. The separate thread is blocked by the callEventService

, something that will be fixed later. The callEventService future { ...

is shorthand for a call to the apply method on the Future object with the code}

block as its only argument, . This method is inFuture.apply(codeblock)

the package object so you only need to import scala.concurrent

 to use it. It is a helper function to asynchronously call ascala.concurrent._

'code block' and get back a , in this case a Future[Event], because weFuture[T]

need the Event for the next call to get traffic information. In case you are new to
Scala, the last expression in a block is automatically the return value. The

 method ensures that the last expression is turned into aFuture.apply

Future[Event]. The type of the futureEvent value is explicitly defined for this
example but can be omitted because of type inference in Scala.

The above code block is actually a . A Closure is a special type ofClosure

 val request = EventRequest(ticketNr)

 val futureEvent:Future[Event] = future {

 val response = callEventService(request)

 response.event
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

114

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

function that can use values from its enclosing scope. You don't have to do
anything special in Scala to create a closure, but it is important to note that this is a
special type of function. The code block refers to the value from therequest

other thread, which is how we bridge between the main thread and the other thread
and pass the request to the web service call.

Great, the web service is now called on a separate thread and we could handle
the response right there. Lets see how we can chain the call to

 to get the traffic information for the event in the listingcallTrafficService

below. As a first step we will print the route to the event to the console:

Listing 5.3 Handling the event result

Asynchronously process the event result when it becomes available.
Call the traffic service with a request based on the event.
Print the route to the console.

The above listing uses the method on , which calls the codeforeach Future

block with the event result when it becomes available. The code block is only
called when the callEventService is successful.

In this case we are expecting to use the Route later on as well, so it would be
better if we could return a . The method returns Future[Route] foreach

 so we'll have to use something else. The below listing shows how this isUnit

done with the method.map

 futureEvent.foreach { event =>
 val trafficRequest = TrafficRequest(destination = event.location,
 arrivalTime = event.time)

 val trafficResponse = callTrafficService(trafficRequest)

 println(trafficResponse.route)
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

115

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 5.4 Chaining the event result

handle the event and return a Future[Route]
return the value to the map function which turns it into a Future[Route].

Both and should be familiar to you from using the foreach map

 library and standard types like and .scala.collections Option Either

Conceptually the method is very similar to for instance Future.map

. Where the method calls a code block if it containsOption.map Option.map

some value and returns a new value, the methodOption[T] Future.map

eventually calls a code block when it contains a successful result and returns a new
 value. In this case a because the last line in the codeFuture[T] Future[Route]

block returns a value. Once again the type of is explicitlyRoute futureRoute

defined which can be omitted. The below code shows how you can chain both web
service calls directly.

Listing 5.5 getRoute method with Future[Route] result

Chain on the Future[Event]
Return the route

 val futureRoute:Future[Route] = futureEvent.map { event =>
 val trafficRequest = TrafficRequest(destination = event.location,
 arrivalTime = event.time)
 val trafficResponse = callTrafficService(trafficRequest)

 trafficResponse.route
 }

 val request = EventRequest(ticketNr)

 val futureRoute = future {
 callEventService(request).event

 }.map { event =>

 val trafficRequest = TrafficRequest(destination = event.location,
 arrivalTime = event.time)

 callTrafficService(trafficRequest).route
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

116

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

If we refactor into a method that takes a ticketNr and a getEvent getRoute

method that takes a event argument the code in the following listing would chain
the two calls. The methods and respectively return a getEvent getRoute

 and .Future[Event] Future[Route]

Listing 5.6 Refactored version

The and methods in thecallEventService callTrafficService

previous examples where blocking calls to show the transition from a synchronous
to an asynchronous call. To really benefit from the asynchronous style the above

 and should be implemented with a non-blocking I/O APIgetEvent getRoute

and return futures directly to minimize the amount of blocking threads. An
example of such an API for HTTP is the library which is builtspray-client

on top of Akka actors and the which makes use of low-level OSJava NIO library
facilities like and . In the next sections you can assume that theselectors channels
web service calls are implemented with , which will be coveredspray-client

in the REST chapter [TODO correct reference].
A detail that has been omitted so far is that you need to provide an implicit

 to use futures. If you do not provide this your code willExecutionContext

not compile. The below snippet shows how you can import an implicit value for
the global execution context.

Listing 5.7 Handling the event result

Use the global ExecutionContext

The is an abstraction for executing tasks on someExecutionContext

thread pooling implementation. If you are familiar with the
 package, it can be compared to a java.util.concurrent

 interface with extras. The globaljava.util.concurrent.Executor

 val futureRoute = getEvent(ticketNr).map { event =>
 getRoute(event)
 }

 import scala.concurrent.Implicits.global

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

117

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

ExecutionContext uses a if it is allowed according to security policyForkJoinPool
and otherwise falls back to a . In the section ThreadPoolExecutor Futures and

 we will see that the dispatcher of an actor system can be used as an Actors
 as well.ExecutionContext

So far we've only looked at chaining successful function results. The next
section is going to show you how you can recover from error results.

The future results in the previous section were expected to always succeed. Lets
look at what happens if an is thrown during the asynchronousException

execution. Start up a scala REPL session on the command line and follow along
with the below listing:

Listing 5.8 Throwing an exception from the Future

Try to print the value once the Future has completed
Nothing gets printed since an Exception occurred

The above listing throws an Exception from another thread. The first thing you
notice is that you do not see a stacktrace in the console which you would have seen
if the exception was thrown directly. The block is not executed. This isforeach

because the future is not completed with a successful value. One of the ways to get
to the failure value is to use the method. This method also takes aonComplete

5.3 Futuristic Errors

 scala> :paste
 // Entering paste mode (ctrl-D to finish)

 import scala.concurrent._
 import ExecutionContext.Implicits.global

 val futureFail = future { throw new Exception("error!")}

 futureFail.foreach(value=> println(value))

 // Exiting paste mode, now interpreting.

 futureFail: scala.concurrent.Future[Nothing] =
 scala.concurrent.impl.Promise$DefaultPromise@193cd8e1

 scala>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

118

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

function like and but in this case it provides a foreach map scala.util.Try

value to the function. The Try can be a or a value. The belowSuccess Failure

REPL session shows how it can be used to print the exception.

Listing 5.9 Using onComplete to handle Success and Failure

Import statement for Try, Success and Failure
It is good practice to only catch non-fatal errors
Print the successful value
Print the non-fatal exception
The exception is printed

The method makes it possible to handle the success or failureonComplete

result. Take note in the above example that the callback is executedonComplete

even if the future has already finished, which is quite possible in the above case
since a exception is directly thrown in the future block. This is true for all
functions that are registered on a future.

The method returns so we cannot chain to a nextonComplete Unit

function. Similarly there is a method which makes it possible toonFailure

match exceptions. onFailure also returns so we can't use it for furtherUnit

chaining. The below listing shows the use of .onFailure

 scala> :paste
 // Entering paste mode (ctrl-D to finish)

 import scala.util._

 import scala.util.control.NonFatal
 import scala.concurrent._
 import ExecutionContext.Implicits.global

 val futureFail = future { throw new Exception("error!")}
 futureFail.onComplete {

 case Success(value) => println(value)

 case Failure(NonFatal(e)) => println(e)
 }

 // Exiting paste mode, now interpreting.

 java.lang.Exception: error!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

119

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 5.10 Using onFailure to match on all non-fatal Exceptions

Called when the function has failed
Match on all non-fatal exception types

We'll need to be able to continue accumulating information in the TicketInfo
service when exceptions occur. The TicketInfo service aggregates information
about the event and should be able to leave out parts of the information if the
required service threw an exception. The below figure shows how the information
around the event is going to be accumulated in a TicketInfo class for a part of the
flow of the TicketInfo service.

Figure 5.7 Accumulate information about the event in the TicketInfo class

The and methods are modified to return a getEvent getTraffic

 value (inside a Future) which will be used to accumulateTicketInfo

information further down the chain. The class is a simple case classTicketInfo

that contains optional values for the service results. The below listing shows the
TicketInfo case class. In the next sections we'll add more information to this class
like a weather forecast and suggestions for other events.

 futureFail.onFailure {

 case NonFatal(e) => println(e)
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

120

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 5.11 TicketInfo case class

All extra information about the ticketNr is optional and default empty

It's important to note that you should always use immutable data structures
when working with futures. Otherwise it would be possible to share mutable state
between futures that possibly use the same objects. We're safe here since we're
using case classes and Options which are immutable. When a service call fails the
chain should continue with the TicketInfo that it had accumulated so far. The
below figure shows how a failed call should be handled.GetTraffic

Figure 5.8 Ignore failed service response

The method can be used to achieve this. This method makes itrecover

possible to define what result should be returned when exceptions occur. The
below snippet shows how it can be used to return the input TicketInfo when a
TrafficServiceException is thrown.

 case class TicketInfo(ticketNr:String, event:Option[Event]=None,
 route:Option[Route]=None

)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

121

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 5.12 Using recover to continue with an alternative Future result

Get event returns a Future[TicketInfo]
flatMap is used so we can directly return a Future[TicketInfo] instead of a
TicketInfo value from the code block.
getTraffic returns a Future[TicketInfo].
recover with a Future containing the initial TicketInfo value.

The method above defines that when a recover

 occurs that it should return the originalTrafficServiceException

ticketInfo that it received as an argument. The getTraffic method normaly creates a
copy of the TicketInfo value with the route added to it. In the above example we
used instead of on the future returned by getEvent. In the codeflatMap map

block passed to you would need to return a TicketInfo value which will bemap

wrapped in a new Future. With you need to return a flatMap

 directly. Since already returns a Future[TicketInfo] getTraffic

 it is easier to use .Future[TicketInfo] flatMap

Similarly there is a method where the code block would needrecoverWith

to return a , instead of a value in the caseFuture[TicketInfo] TicketInfo

of the method in this example. Be aware that the code block passed torecover

the method call is executed after the error has beenrecover synchronously

returned.
In the above code there is still a problem left. What will happen if the first

 call fails? The code block in the flatMap call will not be calledgetEvent

because is a failed Future, so there is no value to chain the nextfutureStep1

call on. The value will be exactly the same as , afutureStep2 futureStep1

failed future result. If we wanted to return an empty TicketInfo containing only the
ticketNr we could recover for the first step as well which is shown in the below
listing.

 val futureStep1 = getEvent(ticketNr)

 val futureStep2 = futureStep1.flatMap { ticketInfo =>

 getTraffic(ticketInfo).recover {

 case e:TrafficServiceException => ticketInfo
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

122

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 5.13 Using recover to return an empty TicketInfo if getEvent failed

Return an empty TicketInfo which only contains the ticketNr in case getEvent
failed.

The code block in the call will not be executed. The flatMap willflatMap

simply return a failed future result. The last call in the above listingrecover

turns this failed Future into a Future[TicketInfo] if the Future contains a non fatal
. Now that you've learned how you can recover from errors in a chainThrowable

of futures we're going to look at more ways to combine futures for the TicketInfo
service.

In the previous sections you were introduced to and to chainmap flatMap

asynchronous functions with futures. In this section we're going to look at more
ways to combine asynchronous functions with futures. Both the traitFuture[T]

and the object provide like and toFuture combinator methods flatMap map

combine futures. These combinator methods are very similar to , flatMap map

ant others found in the . They make it possible to createScala Collections API
pipelines of transformations from one immutable collection to the next, solving a
problem step by step. In this section we will only scratch the surface of the
possibilities of combining futures in a functional style. If you would like to know
more about in Scala we recommend Functional Programming Functional

.Programming in Scala by Paul Chiusano and Rúnar Bjarnason
The TicketInfo service needs to combine several web service calls to provide

the additional information. We will use the combinator methods to add information
to the TicketInfo step by step using functions which take a andTicketInfo

return a . At every step a copy of the Future[TicketInfo] TicketInfo

case class is made which is passed on to the next function, eventually building a

 val futureStep1 = getEvent(ticketNr)
 val futureStep2 = futureStep1.flatMap { ticketInfo =>
 getTraffic(ticketInfo).recover {
 case e:TrafficServiceException => ticketInfo
 }
 }.recover {

 case NonFatal(e) => TicketInfo(ticketNr)
 }

5.4 Combining Futures

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

123

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

complete value. The case class has been updatedTicketInfo TicketInfo

and is shown in the below listing, including the other case classes that are used in
the service.

Listing 5.14 Improved TicketInfo class

The TicketInfo case class collects travel advice, weather and event suggestions.
To keep things simple in this example the route is just a string.
To keep things simple in this example the advice is just a string.

All items are optional except the ticket number and the location of the user.
Every step in the flow will add some information by copying the argument
TicketInfo and modifying properties in the new TicketInfo value, passing it to the
next function. The associated information will be left empty if a service call cannot
be completed, as we've shown in the section on futuristic errors. The below figure

 case class TicketInfo(ticketNr:String,
 userLocation:Location,
 event:Option[Event]=None,
 travelAdvice:Option[TravelAdvice]=None,
 weather:Option[Weather]=None,

 suggestions:Seq[Event]=Seq())

 case class Event(name:String,location:Location,
 time:DateTime)

 case class Weather(temperature:Int, precipitation:Boolean)

 case class RouteByCar(route:String,
 timeToLeave:DateTime,
 origin:Location,
 destination:Location,
 estimatedDuration:Duration,

 trafficJamTime:Duration)

 case class TravelAdvice(routeByCar:Option[RouteByCar]=None,
 publicTransportAdvice: Option[PublicTransportAdvice]=None)

 case class PublicTransportAdvice(advice:String,
 timeToLeave:DateTime,
 origin:Location, destination:Location,

 estimatedDuration:Duration)

 case class Location(lat:Double, lon:Double)

 case class Artist(name:String, calendarUri:String)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

124

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

shows the flow of asynchronous web service calls and the combinators that we will
use in this example:

Figure 5.9 TicketInfoService Flow

The combinators are shown as diamonds in the above figure. We will look at
every combinator in more detail. The flow starts with a ticketNr and a GPS
location of the user of the ticket info service and eventually completes a

 future result. The fastest response of the weather services is used.TicketInfo

Public transport and car route information are combined in a . AtTravelAdvice

the same time similar artists are retrieved and the calendar for each isArtist

requested. This results in suggestions for similar events. All futures are eventually
combined into a . Eventually this final Future[TicketInfo]

 will have an onComplete callback that completes theFuture[TicketInfo]

HTTP request with a response back to the client, which we will omit in these
examples.

We'll start with combining the weather services. The TicketInfo service needs
to call out to many weather services in parallel and use the quickest response. The
below figure shows the combinators used in the flow.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

125

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 5.10 Weather flow

Both weather services return a , which needs to be turnedFuture[Weather]

into a for the next step. If one of the weather services isFuture[TicketInfo]

not responsive we can still inform the client about the weather with the response of
the other service. The below listing shows how the

 method is used in the TicketInfoService flow toFuture.firstCompletedOf

respond to the first completed service:

Listing 5.15 Using firstCompletedOf to get the fastest response

The error recovery is extracted out into a withNone function omitted here. It
simply recovers with a None value.
The first completed Future[Weather].
Copy the weather response into a new ticketInfo. return the copy as the result of
the map code block.
the map code block transforms the completed Weather value into TicketInfo,
resulting in a Future[TicketInfo].

 def getWeather(ticketInfo:TicketInfo):Future[TicketInfo] = {

 val futureWeatherX = callWeatherXService(ticketInfo)

 .recover(withNone)

 val futureWeatherY = callWeatherYService(ticketInfo)

 .recover(withNone)

 val futures = Seq(futureWeatherX, futureWeatherY)

 val fastestResponse = Future.firstCompletedOf(futures)

 fastestResponse.map{ weatherResponse =>

 ticketInfo.copy(weather = weatherResponse)

 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

126

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

First two futures are created for the weather service requests. The
 function creates a new Future out of the twoFuture.firstCompletedOf

provided weather service future results. It is important to note that
 returns the first future. A Future is completedfirstCompletedOf completed

with a successful value or a failure. With the above code the ticketInfo service will
not be able to add weather information when for instance the WeatherX service
fails faster than the WeatherY service can return a correct result. For now this will
do since we will assume that a non-responsive service or a worse performing
service will respond slower than a correct functioning service. We'll see later that a
firstSucceededOf method is not too difficult to write ourselves. [We will get back
to this once we explain Promises and implement our own firstSucceededOf
method. [TODO this explanation forces us to explain Promises and get deeper,
implementing our own firstSucceededOf not sure if this goes too far.]]

The public transport and car route service need to be processed in parallel and
combined into a when both results are available. The belowTravelAdvice

figure shows the combinators used in the flow to add the travel advice.

Figure 5.11 Travel advice flow

 and return two different types insidegetTraffic getPublicTransport

a future, respectively and . TheseRouteByCar PublicTransportAdvice

two values are first put together in a tuple value. The tuple is then mapped into a
 value. The class is shown in the below listing.TravelAdvice TravelAdvice

Listing 5.16 TravelAdvice class

Based on this information the user can decide to travel by car or by public
transport. The below listing shows how the combinator can be used for this.zip

 case class TravelAdvice(routeByCar:Option[RouteByCar] = None,
 publicTransportAdvice: Option[PublicTransportAdvice] = None)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

127

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 5.17 Using zip and map to combine route and public transport advice

Zip Future[RouteByCar] and Future[PublicTransportAdvice] into
Future[(RouteByCar, PublicTransportAdvice)].
Transform the future route and public transport advice into a Future[TicketInfo]

The above code first zips the future public transport and route by car together
into a new Future which contains both results inside a tuple value. It then maps
over the combined future and turns the result into a soFuture[TicketInfo]

it can be chained further down the line. You can use a insteadfor-comprehension
of using the method. This can sometimes lead to more readable code. Themap

below listing shows how it can be used, it does exactly the same thing as the zip
and map in the above listing:

Listing 5.18 Using zip and map to combine route and public transport advice

The future created by the zip method evaluates at some point into a routeByCar
and publicTransportAdvice tuple.
The for-comprehension yields a TicketInfo, which is returned as a
Future[TicketInfo] from the for comprehension, similar to how the map method
does this.

def getTravelAdvice(info:TicketInfo,
 event:Event):Future[TicketInfo] = {
 val futureR = callTraffic(info.userLocation,
 event.location,
 event.time).recover(withNone)
 val futureP = callPublicTransport(info.userLocation,
 event.location,
 event.time).recover(withNone)

 futureR.zip(futureP)

 .map {
 case(routeByCar, publicTransportAdvice) =>
 val travelAdvice = TravelAdvice(routeByCar,
 publicTransportAdvice)
 info.copy(travelAdvice = Some(travelAdvice))
 }
}

for((route, advice) <- futureRoute.zip(futurePublicTransport);
 travelAdvice = TravelAdvice(route, advice)

) yield info.copy(travelAdvice = Some(travelAdvice))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

128

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

If you are not too familiar to for-comprehensions, you could think of it as
iterating over a collection. In the case of a Future we 'iterate' over a collection
which eventually contains one value or nothing (in the case of an exception).

The next part of the flow we'll look at is the suggestion of similar events. Two
web services are used; a similar artist service which returns information about
artists similar to the one performing at the event. The artist information is used to
call a specific calendar service per artist to request the next planned event close to
the event location which will be suggested to the user. The below listing shows
how the suggestions are built up.

Listing 5.19 Using for-comprehension and traverse to map

returns a Future[Seq[Events]], a future list of planned events for every artist.
returns a Future[Seq[Artist]], a Future to similar artists.
'artists' evaluates at some point to a Seq[Artist].
'events' evaluates at some point to a Seq[Events], a planned event for every called
artist.
The for comprehension returns the Seq[Event] as a Future[Seq[Event]].

The above example is a bit more involved. The code is split up over a couple of
methods for clarity although this can obviously be in-lined. The

 is only executed once the artists are available. The getPlannedEvents

 uses the method to build a getPlannedEvents Future.sequence

 out of a . In other words itFuture[Seq[Event]] Seq[Future[Event]]

combines many futures into one single future which contains a list of the results.
The code for is shown in the below listing.getPlannedEvents

 def getSuggestions(event:Event):Future[Seq[Event]] = {

 val futureArtists = callSimilarArtistsService(event)

 for(artists <- futureArtists

 events <- getPlannedEvents(event, artists)

) yield events
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

129

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 5.20 Using sequence to combine many Future[[Event]] into one
Future[Seq[Event]]

returns a Future[Seq[Event]], a list of planned events, one for every similar artist.
map over the Seq[Artists]. for every artist call the calendar service. the 'events'
value is a Seq[Future[Event]].
Turns the Seq[Future[Event]] into a Future[Seq[Event]]. It eventually returns a list
of events when the results of all the asynchronous callArtistCalendarService calls
are completed.

The method is a simpler version of the method. Thesequence traverse

below example shows how getPlannedEvent looks when we use traverse

instead.

Listing 5.21 Using traverse to combine many Future[[Event]] into one
Future[Seq[Event]]

traverse takes a code block which is required to return a Future. It allows you to
traverse a collection and at the same time create the future results.

Using we first had to create a so wesequence Seq[Future[Event]]

could transform it into a . With traverse we can do theFuture[Seq[Event]]

same but without the intermediate step of first creating a
.Seq[Future[Event]]

It's time for the last step in the TicketInfoService flow. The TicketInfo

value which contains the information needs to be combined with theWeather

TicketInfo containing the . We're going to use the methodTravelAdvice fold

 def getPlannedEvents(event:Event, artists:Seq[Artist]) = {

 val events = artists.map { artist=>
 callArtistCalendarService(artist, event.location)
 }
 Future.sequence(events)
 }

 def getPlannedEventsWithTraverse(event:Event, artists:Seq[Artist]) = {

 Future.traverse(artists) { artist=>
 callArtistCalendarService(artist, event.location)
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

130

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

to combine to TicketInfo values into one. The below listing shows how it is used:

Listing 5.22 Using fold to combine two Future[[Event]] into one
Future[Seq[Event]]

create a list of the TicketInfo containing the travel advice and the TicketInfo
containing the weather.
fold is called with the list and the accumulator is initialized with the ticketInfo that
only contains the event information.
Fold returns the result of the previously executed code block in the accumulator
('acc') value. it passes every element to the code block, in this case every
TicketInfo value.
extract the optional travelAdvice and weather properties out of the ticketInfo.
copy the travelAdvice or the weather into the accumulated TicketInfo, whichever is
filled. the copy is returned as the next value of 'acc' for the next invocation of the
code block.

The method works just like on data structures like and fold fold Seq[T]

 which you are probably familiar with. It is often used instead ofList[T]

traditional for loops to build up some data structure through iterating over a
collection. takes a collection, an initial value and a code block. The codefold

block is fired for every element in the collection. The block takes two arguments, a
value to accumulate state in and the element in the collection that is next. In the
above case the initial value is used as the initial value. At everyTicketInfo

iteration of the code block a copy of the is returned that containsTicketInfo

more information, based on the elements in the list.ticketInfos

The complete flow is shown in the below listing:

 val ticketInfos = Seq(infoWithTravelAdvice, infoWithWeather)

 val infoWithTravelAndWeather = Future.fold(ticketInfos)(info) {

 (acc, elem) =>

 val (travelAdvice, weather) = (elem.travelAdvice, elem.weather)

 acc.copy(travelAdvice = travelAdvice.orElse(acc.travelAdvice),

 weather = weather.orElse(acc.weather))
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

131

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 5.23 Complete TicketInfoService flow

 def getTicketInfo(ticketNr:String,
 location:Location):Future[TicketInfo] = {
 val emptyTicketInfo = TicketInfo(ticketNr, location)

 val eventInfo = getEvent(ticketNr, location)
 .recover(withPrevious(emptyTicketInfo))

 eventInfo.flatMap { info =>

 val infoWithWeather = getWeather(info)

 val infoWithTravelAdvice = info.event.map { event =>

 getTravelAdvice(info, event)
 }.getOrElse(eventInfo)

 val suggestedEvents = info.event.map { event =>

 getSuggestions(event)
 }.getOrElse(Future.successful(Seq()))

 val ticketInfos = Seq(infoWithTravelAdvice, infoWithWeather)

 val infoWithTravelAndWeather = Future.fold(ticketInfos)(info) {
 (acc, elem) =>

 val (travelAdvice, weather) = (elem.travelAdvice, elem.weather)
 acc.copy(travelAdvice = travelAdvice.orElse(acc.travelAdvice),
 weather = weather.orElse(acc.weather))

 }

 for(info <- infoWithTravelAndWeather;
 suggestions <- suggestedEvents

) yield info.copy(suggestions = suggestions)
 }
 }

 // error recovery functions to minimize copy/paste
 type Recovery[T] = PartialFunction[Throwable,T]

 // recover with None
 def withNone[T]:Recovery[Option[T]] = { case NonFatal(e) => None }

 // recover with empty sequence
 def withEmptySeq[T]:Recovery[Seq[T]] = { case NonFatal(e) => Seq() }

 // recover with the ticketInfo that was built in the previous step
 def withPrevious(previous:TicketInfo):Recovery[TicketInfo] = {
 case NonFatal(e) => previous
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

132

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

First call getEvent which returns a Future[TicketInfo]
create a TicketInfo with Weather information
create a TicketInfo with TravelAdvice information
get a future list of suggested events
combine weather and travel into one TicketInfo
Eventually add the suggestions as well.
Error recovery methods that are used in the TicketInfoService flow.

That concludes the TicketInfoService example using futures. As you have seen,
futures can be combined in many ways and the combinator methods make it very
easy to transform and sequence asynchronous function results. The entire
TicketInfoService flow does not make one blocking call. If the calls to the
hypothetical web services would be implemented with an asynchronous HTTP
client like the library the amount of blocking threads would be kept tospray-client
a minimum for I/O as well. At the time of writing this book more and more
asynchronous client libraries in Scala for I/O but also for database access are
written that provide Future results.

In the next section we're going to look at how futures can be combined with
Actors.

In the chapter we used for our first REST service whichUp and Running Spray
uses Actors for HTTP request handling. This chapter already showed that the ask

method returns a Future. The below example was given:

5.5 Futures and Actors

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

133

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 5.24 Collecting event information

Import the ask pattern, which adds the ask method to ActorRef.
The context contains an implicit def of the dispatcher of the actor. Importing the
context imports the dispatcher of this actor as the execution context in implicit
scope which will be used for the futures.
A timeout needs to be defined for ask. If the ask does not complete within the
timeout the future will contain a timeout exception.
Capture the contextual sender reference into a value.
A local method definition for asking GetEvents to a TicketSeller.
The ask method returns a Future result. Because Actors can send back any message
the returned Future is not typed. we use the mapTo method to convert the
Future[Any] to a Future[Int]. If the actor responds with a different message than an
Int the mapTo will complete with a failed Future.
Send back information to the captured sender. The captured sender is the sender of
the original GetEvents request which should receive the response.
Ask all the children how many tickets they have left for the event.

This example should be more clear now than it was in chapter two. To reiterate,
the example shows how the boxOffice actor can collect the number of tickets that
every ticket seller has left.

import akka.pattern.ask

import context._

implicit val timeout = Timeout(5 seconds)

val capturedSender = sender

def askEvent(ticketSeller:ActorRef): Future[Event] = {

 val futureInt = ticketSeller.ask(GetEvents).mapTo[Int]

 futureInt.map { nrOfTickets =>
 Event(ticketSeller.actorRef.path.name, nrOfTickets)
 }
}

val futures = context.children.map {

 ticketSeller => askEvent(ticketSeller)
}

Future.sequence(futures).map {

 events => capturedSender ! Events(events.toList)
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

134

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The above example shows a couple of important details. First of all we capture
the sender reference into a value. This is necessary because the sender is part of the
actor context, which can differ at every message the actor receives. The sender of
the message can obviously be different for every message the actor receives. Since
the future callback is a Closure it the values it needs to use. The closes over

 could have a completely different value at the time the callback issender

invoked. This is why the sender is captured into a value,capturedSender

which makes it possible to respond to the originator of the GetEvents request.
So be aware when using futures from Actors that the ActorContext provides a

current view of the Actor. And since actors are stateful it is important to make sure
that the values that you close over are not mutable from another thread. The easiest
way to prevent this problem is to use immutable data structures and capture the
reference to the immutable data structure before closing over it from a future, as
shown above in the capturedSender example.

Another pattern that is used in the Up and Running example is . ThepipeTo

below listing shows an example of its use:

Listing 5.25

Imports the pipe pattern
Create an actor for every request that completes the HTTP request with a response
The Future result of the ask is piped to the responder actor

The RestInterface uses a per-request actor to handle the HTTP request and
provide a HTTP response. The /events URL is translated to a call to the boxOffice
to collect the amount of tickets left per event. The result of the request to the
boxOffice is a . The value that that future willFuture[Events] Events

eventually contain is piped to the responder actor when it becomes available. The
responder actor completes the request when it receives this message, as is shown in
below listing.

 import akka.pattern.pipe
 path("events") {
 get { requestContext =>

 val responder = createResponder(requestContext)

 boxOffice.ask(GetEvents).pipeTo(responder)
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

135

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 5.26

The method is useful when you want an actor to handle the result of apipeTo

Future, or when the result of asking an actor needs to be handled by another actor.

This chapter gave an introduction on futures. You have learnt how to use futures to
create a flow out of asynchronous functions. The goal has been to minimize
explicitly blocking and waiting on threads, maximize resource usage and minimize
unnecessary latency.

A Future is a placeholder for a function result that will eventually be available.
It is a great tool for combining functions into asynchronous flows. futures make it
possible to define transformations from one result to the next. Since futures are all
about function results it's no surprise that a functional approach needs to be taken
to combine these results.

The combinator methods for futures provide a 'transformational style' similar to
the combinators found in the scala collections library. Functions are executed in
parallel and where needed in sequence, eventually providing a meaningful result. A
Future can contain a successful value or a failure. Luckily failures can be recovered
with a replacement value to continue the flow.

The value contained in a Future should be immutable to be sure that no
accidental mutable state is shared. Futures can be used from Actors, but you need
to be careful with what state you close over. The sender reference of an actor needs

 class Responder(requestContext:RequestContext,
 ticketMaster:ActorRef)
 extends Actor with ActorLogging {

 def receive = {

 case Events(events) =>
 requestContext.complete(StatusCodes.OK, events)
 self ! PoisonPill

 // other messages omitted..
 }
 }

5.6 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

136

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

to be captured into a value before it can be safely used for instance. Futures are
used in the Actor API as the response of an method. Future results can also beask

provided to an actor with the method.pipeTo

Now that you know about futures we're going back to Actors in the next
chapter. This time we'll scale the goticks.com app with Remote Actors.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

137

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

6
In this chapter

An introduction to scaling out
Distributing the goticks.com App
Remoting
Testing distributed actor systems

So far we have only looked at building an Akka actor system on one node. This
chapter will serve as an introduction to scaling out Akka applications. You will
build your first distributed Akka App right here. We'll take the Up and Running
App from chapter 2 and scale it out.

We start off with some common terminology and a quick look at the different
approach Akka takes to scale out. You will be introduced to the akka-remote
module and how it provides an elegant solution for communicating between actors
across the network. We'll scale the goticks.com app out to two nodes; a frontend
and a backend server. You'll find out how you can unit test the app using the
Multi-JVM testkit.

This chapter will just get you acquainted to scaling out your apps. Chapter 7
will introduce you to clustering. Chapter 13 will dive into the details of scaling out
a much more involved example once you are more familiar with how to build a
real world Akka application, which is the main topic of the second part of this
book.

Your first Distributed Akka App

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

138

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

You might have hoped that this was going to be a chapter about a silver bullet to
make any application scale out to thousands of machines, but here is the truth:
distributed computing is hard. Notoriously hard. Don't stop reading yet though!
Akka will at least give you some really nice tools that make your life in distributed
computing a little easier. Once again Akka is not promising a free lunch but just as
actors simplify concurrent programming, we will also see that that they simplify
the move to truly distributed computing. We will bring back our GoTicks.com
project and make it distributed.

Most network technologies use a Remote Procedure Call (RPC) style of
interaction for communicating with objects across the network, which tries to mask
the difference between calling an object locally or remotely. The idea being that a
local programming model is simplest, so let the programmer just work in that way,
then transparently make it possible to remote some of the calls when and where
required. This style of communication 'works' for point to point connections
between servers but it is not a good solution for larger scale networks as we will
see in the next section. Message-oriented middleware can solve this, but at the cost
of having the application absorb the messaging system into the application layer.
Akka takes a different approach when it comes to scaling out applications across
the network, that gives us the best of both approaches: we have relative
transparency of remoting collaborators, but we don't have to change our Actor
code: you will see the top layer looks the same.

Before we dive in, we'll look at examples of network topologies and some
common terminology in the following section, just in case you are not too familiar
with these. If you're already an expert in the field you might want to skip right
section 6.2.

When we refer to a in this chapter we mean a running application whichNode
communicates across the network. It is a connection point in a network topology.
It's part of a distributed system. Many nodes can run on one server or they can run
on separate servers. Figure 6.1 shows some common network topologies:

6.1 Scaling out

6.1.1 Common network terminology

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

139

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 6.1 Common network topologies

A node has a specific in the distributed system. It has a specificRole
responsibility to execute particular tasks. A node could for instance take part in a
distributed database or it could be one of many web servers that fulfill frontend
web requests.

A node uses a specific network to communicate with othertransport protocol
nodes. Examples of transport protocols are TCP/IP and UDP. Messages between
the nodes are sent over the transport protocol and need to be encoded and decoded
into network specific . The protocol data units contain a storedprotocol data units
representation of the messages as byte arrays. Messages need to be translated to
and from bytes, respectively known as and . Akkaserialization deserialization
provides a serialization module for this purpose, which we will briefly touch on in
this chapter.

When nodes are part of the same distributed system they share a group
. This membership can be or (or even a mix of both). Inmembership static dynamic

a static membership the number of nodes and the role of every node is fixed and
cannot change during the lifetime of the network. A dynamic membership allows
for nodes to take on different roles and for nodes to join and leave the network.

The static membership is obviously the simplest of the two. All servers hold a
reference to the other nodes' network address at startup. It is also less resilient; a
node cannot simply be replaced by another node running on a different network
address.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

140

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The dynamic membership is more flexible and makes it possible for a group of
nodes to grow and shrink as required. It also makes it possible to deal with failed
nodes in the network, possibly automatically replacing them. It is also far more
complex than the static membership. When a dynamic membership is properly
implemented it needs to provide a mechanism to dynamically join and leave the
cluster, detect and deal with network failures, identify unreachable/failed nodes in
the network and provide some kind of mechanism through which newdiscovery
nodes can find an existing group on the network since the network addresses are
not statically defined.

Now that we have briefly looked at network topologies and common
terminology the next section will look at the reason why Akka uses a distributed
programming model for building both local and distributed systems.

Our ultimate goal is to scale to many nodes and very often the starting point is a
local app on one node: your laptop. So what changes exactly when we want to
make the step to one of the distributed topologies in the previous section? Can't we
abstract away the fact that all these nodes run on one 'virtual node' and let some
clever tool work out all the details so we don't have to change the code running on

the laptop at all? The short answer is no . We can't simply abstract the differences1

between a local and distributed environment. Luckily you don't just have to take

our word for it. According to the paper there areA Note on Distributed Computing2

four important areas in which local programming differs from distributed
programming which cannot be ignored. The four areas are latency, memory access,
partial failure and concurrency. The below list briefly summarizes the differences
in the four areas:

Footnote 1mSoftware suppliers that still sell you this idea will obviously disagree!

Footnote 2m1994 Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall

Latency: having the network in between collaborators means a. much more time for each
message, and b. delays due to traffic, resent packets, intermittent connections, etc.

 Knowing if all parts of a distributed system are still functioning is a veryPartial Failure:
hard problem to solve when parts of the system are not always visible, disappear and
even reappear.
Memory Access: Getting a reference to an object in memory in a local system cannot
intermittently fail, which can be the case for getting a reference to an object in a
distributed setting.

 no one 'owner' of everything, and the above factors mean the plan toConcurrency:
interleave operations can go awry.

6.1.2 Reasons for a distributed programming model

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

141

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Using a local programming model in a distributed environment fails at scale
because of these differences. Akka provides the ; a distributedexact opposite
programming model for both a distributed and a local environment. The above
mentioned paper also mentions this choice and states that distributed programming
would be simpler this way but also states that it could make local programming
unnecessarily hard; as hard as distributed programming.

But times have changed. Almost 2 decades later we have to deal with many
CPU cores. And more and more tasks simply need to be distributed in the cloud.
Enforcing a distributed programming model for local systems has the advantage
that it simplifies concurrent programming as we have seen in the previous chapters.
We have already gotten used to asynchronous interactions, expect partial failures
(even embrace it), and we use a shared nothing approach to concurrency, which
both simplifies programming for many CPU cores and makes us more prepared for
a distributed environment.

We will show you that this choice provides a solid foundation for building both
local and distributed applications that are fit for the challenges of today. Akka
provides both a simple API for asynchronous programming and the tools you need
to test your applications locally and remotely. Now that you understand the
reasoning for a distributed programming model for both local and distributed
systems we're going to look at how we can scale out the goticks.com App that we
built in Chapter 2 in the next sections.

Since this is an introduction to scaling out we're going to use the relatively simple
example goticks.com app from chapter 2. In the next sections we will change the
app so it runs on more than one node. Although the goticks.com app is an
oversimplified example it will give us a feel of the changes we need to make to an
app that has not made any accommodations for scaling yet.

We'll define a static membership between two nodes using a client-server
network topology since it is the easiest path from local to distributed. The roles for
the two nodes in this setup are frontend and backend. The REST Interface will run
on a frontend node. The BoxOffice and all TicketSellers will run on a backend
node. Both nodes have a static reference to each other's network addresses. Figure
6.2 shows the change that we're going to make:

6.2 Scaling Out with Remoting

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

142

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 6.2 From single node to client-server

We'll use the akka-remote module to make this change. The BoxOffice Actor
creates TicketSeller actors when new Events are created in the local version of the
app. In the client server topology this will have to be done as well. As we will see
the akka-remote module makes it possible to create and deploy actors remotely.
The frontend is going to lookup the BoxOffice actor on a backend node on its
known address which creates the TicketSeller actors. We'll also look at a variation
on this where the frontend remotely deploys a BoxOffice actor on the backend
node.

In the next section we're going to get our hands dirty with remoting. We'll start
with looking at the changes that need to be made to the SBT build file and then
look at the changes we have to make to the rest of the code.

The chapter6 folder in the akka-in-action contains a modified version of the
chapter2 example. You can follow along by making the changes on top of the
chapter2 sample as described here. The first thing we need to do is add the
dependencies for akka-remote and the akka-multinode-testkit in the SBT build file:

6.2.1 Making the GoTicks App Distributed

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

143

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 6.1 Build File Changes for Distributed GoTicks

Dependency on akka-remote module
Dependency on multi-node testkit for testing distributed actor systems

These dependencies are pulled in automatically when you start sbt or you can
run to explicitly pull in the dependencies. Now that we have thesbt update

dependencies updated and ready to go, let's look at the changes that we need to
make for connecting frontend and backend. The actors on the frontend and
backend will need to get a reference to their collaborator, which is the topic of the
next section.

Akka provides two ways to get a reference to an actor on a remote node. One is to
look up the actor by its path, the other is to create the actor, get its reference and
deploy it remotely. We will start with the former option.

The REPL console is a great interactive tool for quickly exploring new scala
classes. Let's get two actor systems up in two REPL sessions using the sbt console.
Start a terminal in the chapter6 folder using . We need to enablesbt console

remoting so the first thing we need to do is provide some configuration. Normally
an configuration file in your src/main/resources folder wouldapplication.conf
contain this information but in the case of a REPL session we can just load it from

libraryDependencies ++= {
 val akkaV = "2.2-M3"
 val sprayV = "1.2-M8-SNAPSHOT"
 Seq(
 "com.typesafe.akka" %% "akka-actor" % akkaV,
 "com.typesafe.akka" %% "akka-slf4j" % akkaV,

 "com.typesafe.akka" %% "akka-remote" % akkaV,

 "com.typesafe.akka" %% "akka-multi-node-testkit" % akkaV % "test",
 "com.typesafe.akka" %% "akka-testkit" % akkaV % "test",
 "org.scalatest" %% "scalatest" % "1.9.1" % "test",
 "io.spray" % "spray-can" % sprayV,
 "io.spray" % "spray-routing" % sprayV,
 "io.spray" %% "spray-json" % "1.2.3",
 "com.typesafe.akka" %% "akka-slf4j" % akkaV,
 "ch.qos.logback" % "logback-classic" % "1.0.10"
)
}

6.2.2 Remote REPL action

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

144

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

a String. Listing 6.2 contains the REPL commands to execute using the :paste

command:

Listing 6.2 REPL commands for loading up Remoting

Select the Remote ActorRef Provider to bootstrap remoting
the configuration section for remoting
Enable the TCP transport
Settings for the TCP transport, the host and port to listen on

We're going to load this configuration string into an ActorSystem. Most notably
it defines a specific for Remoting which bootstraps theActorRefProvider
akka-remote module. As the name suggests it also takes care of providing your
code with ActorRefs to Remote Actors. Listing 6.3 first imports the required
config and actor packages and then loads the config into an actor system:

 scala> :paste
 // Entering paste mode (ctrl-D to finish)

 val conf = """
 akka {
 actor {

 provider = "akka.remote.RemoteActorRefProvider"
 }

 remote {

 enabled-transports = ["akka.remote.netty.tcp"]

 netty.tcp {
 hostname = "0.0.0.0"
 port = 2551
 }
 }
 }
 """

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

145

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 6.3 Remoting Config

Parse the String into a Config object.
Create the ActorSystem with the parsed Config object.

If you have typed along you just started your first remote-enabled ActorSystem
from a REPL, it's that simple! Depending on your perspective that's five lines of
code to bootstrap and start a server.

The "backend" ActorSystem is created with the config object which enables
remoting. If you forget to pass the config to the ActorSystem you will end up with
an ActorSystem that runs but is not enabled for remoting because the default
application.conf that is packaged with Akka does not bootstrap remoting. The
Remoting module now listens on all interfaces (0.0.0.0) on port 2551 for the
backend actor system. Lets add a very simple Actor that just prints whatever it
receives to the console so we can see that everything works. Listing 6.4 shows the
code we need.

 scala> import com.typesafe.config._
 import com.typesafe.config._

 scala> import akka.actor._
 import akka.actor._

 scala> val config = ConfigFactory.parseString(conf)
 config: com.typesafe.config.Config =

 scala> val backend = ActorSystem("backend", config)
 [Remoting] Starting remoting

 [Remoting] Remoting now listens on addresses:
 [akka.tcp://backend@0.0.0.0:2551]
 backend: akka.actor.ActorSystem = akka://backend

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

146

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://backend@0.0.0.0:2551]
akka://backend
http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 6.4 Configuring the Front End Actor

Create the simple actor in the backend actor system with the name "simple"

The Simple actor is now running in the backend actor system. It's important to
note that the Simple actor is created with the name "simple". This will make it
possible to find it on the other side by name. Time to start up another terminal, fire
up sbt console and create another remoting-enabled actor system, the "frontend".
We'll use the same commands as before except for the fact that we want to make
sure that the frontend actor system runs on a different TCP port:

 scala> :paste
 // Entering paste mode (ctrl-D to finish)

 class Simple extends Actor {

 def receive = {
 case m => println(s"received $m!")
 }
 }
 // Exiting paste mode, now interpreting.

 scala> backend.actorOf(Props[Simple], "simple")

 scala> :paste
 // Entering paste mode (ctrl-D to finish)

 val conf = """
 akka {
 actor {
 provider = "akka.remote.RemoteActorRefProvider"
 }
 remote {
 enabled-transports = ["akka.remote.netty.tcp"]
 netty.tcp {
 hostname = "0.0.0.0"

 port = 2552
 }
 }
 }
 """

 import com.typesafe.config._

 import akka.actor._

 val config = ConfigFactory.parseString(conf)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

147

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Run the frontend on a different port than the backend so they can both run on the
same machine

The configuration is loaded into the frontend actorsystem. The frontend
actorsystem is now also running and remoting has started. Lets get a reference to
the actor on the backend actor system from the frontend side. We're firstSimple

going to construct an actor path. The belows figure shows how the path is built up:

Figure 6.3 Remote actor paths

We can construct the path as a String and use the methodactorSelection

on the frontend actorsystem to find it:

 val frontend= ActorSystem("frontend", config)
 [Remoting] Starting remoting

 [Remoting] Remoting now listens on addresses:
 [akka.tcp://backend@0.0.0.0:2552]
 frontend: akka.actor.ActorSystem = akka://frontend

scala> :paste
// Entering paste mode (ctrl-D to finish)

val path = "akka.tcp://backend@0.0.0.0:2551/user/simple"

val simple = frontend.actorSelection(path)

// Exiting paste mode, now interpreting.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

148

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://backend@0.0.0.0:2552]
akka://frontend
tcp://backend@0.0.0.0:2551/user/simple
http://www.manning-sandbox.com/forum.jspa?forumID=835

The path to the remote Simple Actor
Select the actor with an ActorSelection

Think of the method as a query in the actor hierarchy. In thisactorSelection
case the query is an exact path to a remote actor. The is an objectActorSelection
that represents all the actors that have been found in the actor system with the

 method. The Actor Selection can be used to send a messageactorSelection

to all actors that match the query. We don't need the exact ActorRef of the Simple
Actor for now, we only want to try and send a message to it so the ActorSelection
will do. Since the backend actor system is already running in the other console you
should be able to do the below:

When you switch to the terminal where you started the backend actor system
you should see the following printed message:

The REPL console shows you that the message was sent from the frontend to
the backend. Being able to interactively explore remoting systems using a REPL
console is pure gold in our opinion so you can expect more of it in next chapters.

What happened under the covers is that the "Hello Remote World!" message
was serialized, sent to a TCP socket, received by the remoting module, deserialized
and forwarded to the Simple Actor running on the backend.

You probably noticed that we did not write any special code for serialization, so
why did it work? It's because we sent a simple String ("Hello Remote World!").
Akka uses Java Serialization by default for any message that needs to sent across
the wire. Other serializers are also available and you can write your own custom

path: String = akka.tcp://backend@0.0.0.0:2551/user/simple
simple: akka.actor.ActorSelection =
ActorSelection[Actor[akka.tcp://backend@0.0.0.0:2551/]/user/simple]

 scala> simple ! "Hello Remote World!"

 scala>

 scala> received Hello Remote World!!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

149

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://backend@0.0.0.0:2551/user/simple
tcp://backend@0.0.0.0:2551/]/
http://www.manning-sandbox.com/forum.jspa?forumID=835

serializer as well which is a topic we will deal with in part 3. The Akka remote
 has a field which contains the name of the serializer that wasmessage protocol

used for the message so that the receiving remote module can de-serialize the
payload bytes. The class that is used to represent a message needs to be
Serializable and it needs to be available on the classpath on both sides. Luckily

'standard' case classes and case objects are serializable by default which are used3

as messages in the goticks.com app. Now that you have seen how you can lookup a
remote actor and send a message to it in the REPL lets look at how we can apply it
in the goticks.com app in the next section.

Footnote 3 Serializable is a marker interface and guarantees nothing. You need to verify that it works if you usem
'non-standard' constructs.

Instead of directly creating a BoxOffice actor in the RestInterface actor we will
look it up on the backend node. Figure 6.4 shows what we're going to try and
achieve:

Figure 6.4 Remote Lookup of the BoxOffice Actor

In the previous version of the code the RestInterface directly created a child
BoxOffice actor:

This call made the boxOffice a direct child of the RestInterface. To make the
app a bit more flexible and to make it possible to run it both in single node and in

6.2.3 Remote Lookup

 val boxOffice = context.actorOf(Props[BoxOffice], "boxOffice")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

150

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

client server, we will move this code into a trait that we can mix in. This trait is
shown in listing 6.5 as well as the change we need to make to the RestInterface
code:

Listing 6.5 Creator of BoxOffice

This trait has to be mixed into an Actor so it can use the actor context.
The createBoxOffice method creates the BoxOffice actor and returns an ActorRef.
The RestApi trait contains all the logic for the RestInterface actor.
BoxOfficeCreator is mixed into the RestApi trait
BoxOffice is created using the createBoxOffice method

We've now separated the code to create the BoxOffice in a separate trait and
made it the default behavior of the RestInterface to create a local boxOffice. A

 trait will override the default behavior of whichRemoteBoxOfficeCreator

the details will follow shortly. A , and a SingleNodeMain FrontendMain

 are created to start the app in single node mode or to start aBackendMain

frontend and backend separately. Listing 6.6 shows the interesting code (as
snippets) of the three main classes:

 trait BoxOfficeCreator { this: Actor =>
 def createBoxOffice:ActorRef = {
 context.actorOf(Props[BoxOffice], "boxOffice")

 }
 }

 class RestInterface extends HttpServiceActor with RestApi {
 def receive = runRoute(routes)
 }

 trait RestApi extends HttpService
 with ActorLogging

 with BoxOfficeCreator { actor: Actor =>

 val boxOffice = createBoxOffice

 // rest of the code of the RestApi ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

151

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 6.6 Highlights from the Core Actors

Create the rest interface as before
Mix the RemoteBoxOfficeCreator trait in
Create the rest interface with a RemoteBoxOfficeCreator mixed in.
Create a top-level boxOffice actor on the backend.

All main classes load their configuration from a specific configuration file, the
SingleNodeMain, FrontendMain and BackendMain load from the files
singlenode.conf, frontend.conf and backend.conf respectively. The frontend.conf
file has an extra config section for looking up the boxoffice actor. The

 loads these extra configuration properties:RemoteBoxOfficeCreator

 //Snippet from SingleNodeMain
 val system = ActorSystem("singlenode", config)

 val restInterface = system.actorOf(Props[RestInterface],

 "restInterface")

 //Snippet from FrontendMain
 val system = ActorSystem("frontend", config)

 class FrontendRestInterface extends RestInterface

 with RemoteBoxOfficeCreator

 val restInterface = system.actorOf(Props[FrontendRestInterface],

 "restInterface")

 //Snippet from BackendMain
 val system = ActorSystem("backend", config)
 val config = ConfigFactory.load("backend")
 val system = ActorSystem("backend", config)

 system.actorOf(Props[BoxOffice], "boxOffice")

 backend {
 host = "0.0.0.0"
 port = 2552
 protocol = "akka.tcp"
 system = "backend"
 actor = "user/boxOffice"
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

152

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The path to the boxoffice actor is built from this configuration section. Getting
an Actor Selection to the remote actor was fine in the REPL console, just to try out
sending a message, when we were certain that the backend was present. In this case
we would like to work with an ActorRef instead since the single node version used
one. The trait is show in listing 6.7:RemoteBoxOfficeCreator

Listing 6.7 Trait for Creation of Remote BoxOffice

Load the frontend.conf configuration and get the "backend" config section
properties to build the path.
Create the path to the boxoffice
return an Actor that looks up the box office actor which we will cover next. The
Actor is constructed with one argument; the path to the remote boxOffice.

The RemoteBoxOfficeCreator creates a separate Actor toRemoteLookup

lookup the boxOffice. In previous versions of akka you could use the actorFor

method to directly get an ActorRef to the remote actor. This method has been
deprecated since the returned ActorRef did not behave exactly the same way as a
local ActorRef in case the related actor died. An ActorRef returned by actorFor
could point to a newly spawned remote actor instance while this was never the case

object RemoteBoxOfficeCreator {

 val config = ConfigFactory.load("frontend").getConfig("backend")
 val host = config.getString("host")
 val port = config.getInt("port")
 val protocol = config.getString("protocol")
 val systemName = config.getString("system")
 val actorName = config.getString("actor")
}

trait RemoteBoxOfficeCreator extends BoxOfficeCreator { this:Actor =>
 import RemoteBoxOfficeCreator._

 def createPath:String = {

 s"$protocol://$systemName@$host:$port/$actorName"
 }

 override def createBoxOffice = {
 val path = createPath
 context.actorOf(Props(classOf[RemoteLookup],path),

 "lookupBoxOffice")
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

153

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

in a local context. At the time Remote Actors could not be watched for termination
like local Actors which was another reason for the need to deprecate this method.

Which brings us to the reason for the RemoteLookup actor;

The backend actor system might not have started up yet, or it could have crashed or it
could have been restarted.
The boxOffice actor itself could also have crashed and restarted.
Ideally, we would start the backend node before the frontend, so the frontend could do
the lookup once at startup.

The RemoteLookup actor will take care of these scenarios. Figure 6.5 shows
how the RemoteLookup sits between the RestInterface and the BoxOffice. It
transparently forwards messages for the RestInterface.

Figure 6.5 RemoteLookup actor

The RemoteLookup actor is a state machine that can only be in one of two
states we have defined: identify or active. It uses the method to switch itsbecome

receive method to identify or active. The RemoteLookup tries to get a valid
ActorRef to the BoxOffice when it does not have one yet in the identify state or it
forwards all messages sent to a valid ActorRef to the BoxOffice in the active state.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

154

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

If the RemoteLookup detects that the BoxOffice has been terminated it tries to get
a valid ActorRef again when it receives no messages for a while. We'll use Remote
Deathwatch for this. Sounds like something new but from the perspective of API
usage it's exactly the same thing as normal actor monitoring/watching. Listing 6.8
shows the code:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

155

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 6.8 Remote Lookup

Send a ReceiveTimeout message if no message has been received for 3 seconds
Immediately start to request the identity of the actor

 import scala.concurrent.duration._

 class RemoteLookup(path:String) extends Actor with ActorLogging {

 context.setReceiveTimeout(3 seconds)

 sendIdentifyRequest()

 def sendIdentifyRequest(): Unit = {

 val selection = context.actorSelection(path)

 selection ! Identify(path)
 }

 def receive = identify
 def identify: Receive = {

 case ActorIdentity(`path`, Some(actor)) =>

 context.setReceiveTimeout(Duration.Undefined)
 log.info("switching to active state")

 context.become(active(actor))

 context.watch(actor)

 case ActorIdentity(`path`, None) =>
 log.error(s"Remote actor with path $path is not available.")

 case ReceiveTimeout =>

 sendIdentifyRequest()

 case msg:Any =>

 log.error(s"Ignoring message $msg, not ready yet.")
 }

 def active(actor: ActorRef): Receive = {

 case Terminated(actorRef) =>
 log.info("Actor $actorRef terminated.")
 context.become(identify)
 log.info("switching to identify state")
 context.setReceiveTimeout(3 seconds)
 sendIdentifyRequest()

 case msg:Any => actor forward msg
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

156

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Select the actor by path
Send an Identify message to the actorSelection
The actor is initially in identify receive state
The actor has been identified and an ActorRef to it is returned
No longer send a ReceiveTimeout if the actor gets not messges since it is now
active.
Change to active receive state
Watch the remote actor for termination
The actor is not (yet) available, the backend is unreachable or not started
Keep trying to identify the remote actor if no message is received.
No messages are sent in the identify receive state
The active receive state.
If the remote actor is terminated the RemoteLookup actor should change its
behavior to the identify receive state
Forward all other messages when the remote actor is active.

As you can see Death watch / monitoring API which was described in chapter 3
is exactly the same for local and remote actors. Simply watching an ActorRef will
make sure the actor gets notified of termination of an actor regardless if it's remote
or local. Akka uses a very sophisticated protocol to statistically detect that a node
is unreachable. We will look at this protocol in more detail in chapter 13. The
ActorRef to the boxOffice is retrieved using a special message whichIdentify

is sent to the ActorSelection. The remote module of the backend ActorSystem
responds with an message which contains the ActorRef to theActorIdentity

remote actor.
That concludes the changes we had to make to the goticks.com app to move

from a single node to a frontend and backend node. Apart from being able to
communicate remotely, the frontend and backend can boot separately, the frontend
will lookup the boxoffice and can communicate with it when it is available and can
take action when it is not.

The last thing you could do is actually run the FrontendMain and BackendMain
classes. We'll startup two terminals and use to run a main class in thesbt run

project. You should get the following output in the terminals:

 [info] ...
 [info] ... (sbt messages)
 [info] ...
 Multiple main classes detected, select one to run:
 [1] com.goticks.SingleNodeMain
 [2] com.goticks.FrontendMain
 [3] com.goticks.BackendMain
 Enter number:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

157

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Select FrontendMain in one terminal and BackendMain in another. See what
happens if you kill the sbt process that runs the BackendMain and restart it again.
You can test if the app works with the same httpie commands as before, for
instance http PUT localhost:8000/events event=RHCP

 to create an event with 10 tickets and nrOfTickets:=10 http GET

 to get a ticket to the event. If you did try tolocalhost:5000/ticket/RHCP

kill the backend process and start it up again you will see in the console that the
RemoteLookup class switches from active to identify and back. You will also
notice that Akka reports errors about the remote connection to the other node. If
you are not interested in the logging of these remote lifecycle events you can
switch the logging off by adding the below to the remote config section:

The remote lifecycle events are logged by default. This makes it easier to find
problems when you start out with the remote module and for instance make a
minor mistake in the actor path syntax. You can subscribe to the remote lifecycle
events using the actor system's which is described in chapter 10 oneventStream
Channels. Since remote actors can be watched like any local actor there is no need
to act upon these events individually for the sake of connection management.

Lets review the changes:

The BoxOfficeCreator trait was extracted from the code. A Remote version was added to
lookup the BoxOffice on the backend.
The RemoteBoxOfficeCreator adds a RemoteLookup Actor in between the RestInterface
and the BoxOffice. It forwards all messages it receives to the Boxoffice. It identifies the
ActorRef to the BoxOffice and remotely monitors it.

As said in the beginning of this section Akka provides two ways to get an
ActorRef to a remote actor. In the next section we will look at the second option,
namely remote deployment.

 remote {
 log-remote-lifecycle-events = off
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

158

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Remote deployment can be done programmatically or through configuration. We
will start with the preferred approach: configured. Of course, this is preferred
because changes to the cluster settings can be made without rebuilding the app.
The standard BoxOfficeCreator trait creates the boxOffice as a child of the Actor it
is mixed in with, namely the RestInterface:

The local path to this actor would be ,/restInterface/boxOffice

omitting the guardian actor. When we use configured remote deployment alluser

we have to do is tell the frontend actor system that when an actor is created with
the path it should not create it locally but/restInterface/boxOffice

remotely. This is done with the piece of configuration in listing 6.9:

Listing 6.9 Configuration of the RemoteActorRefProvider

An actor with this path will be deployed remotely
The remote address where the actor should be deployed. the ip address or host
name has to match exactly with the interface the remote backend actor system is
listening on.

Remote deployment can also be done programmatically which is shown for
completeness sake. In most cases it is better to configure the remote deployment of
actors through the configuration system (using properties), but in some cases,
perhaps if you are referencing different nodes by CNAMES (which are themselves
configurable) for example, you might just do the configuration in code. Fully
dynamic remote deployment makes more sense when using the akka-cluster

6.2.4 Remote Deployment

 val boxOffice = context.actorOf(Props[BoxOffice],
 "boxOffice")

 actor {
 provider = "akka.remote.RemoteActorRefProvider"
 deployment {

 /restInterface/boxOffice {

 remote = "akka.tcp://backend@0.0.0.0:2552"
 }
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

159

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://backend@0.0.0.0:2552
http://www.manning-sandbox.com/forum.jspa?forumID=835

module since it is built specifically to support dynamic membership. An example
of programmatic remote deployment is shown in listing 6.10.

Listing 6.10 Programmatic Remote Deploy Configuration

Create an address to the backend from the uri
Create a Props with a remote deployment scope

The above code creates and deploys the boxOffice remotely to the backend as
well. The Props configuration object specifies a remote scope for deployment.

It is important to note that remote deployment does not require that Akka
automatically deploys the actual class file(s) for the BoxOffice actor into the
remote actor system in some way; the code for the BoxOffice needs to already be
present on the remote actor system for this to work and the remote actor system
needs to be running. If the remote backend actorsystem crashes and restarts the
ActorRef will not automatically point to the new remote actor instance. Since the
actor is going to be deployed remotely it cannot already be started by the backend
actor system as we did in the BackendMain. Because of this a couple of changes
have to be made. The following Main classes are defined:

 val uri = "akka.tcp://backend@0.0.0.0:2552"

 val backendAddress = AddressFromURIString(uri)

 val props = Props[BoxOffice].withDeploy(
 Deploy(scope = RemoteScope(backendAddress))

)

 context.actorOf(props, "boxOffice")

 // the main class to start the backend node.
 object BackendRemoteDeployMain extends App {
 val config = ConfigFactory.load("backend")

 val system = ActorSystem("backend", config)
 }
 object FrontendRemoteDeployMain extends App {
 val config = ConfigFactory.load("frontend-remote-deploy")
 val host = config.getString("http.host")
 val port = config.getInt("http.port")
 val system = ActorSystem("frontend", config)

 val restInterface = system.actorOf(Props[RestInterface],
 "restInterface")
 Http(system).manager ! Bind(listener = restInterface,
 interface = host,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

160

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://backend@0.0.0.0:2552
http://www.manning-sandbox.com/forum.jspa?forumID=835

Not creating the boxOffice actor anymore
Not mixing in a specific trait anymore, using the default BoxOfficeCreator

When you run these main classes with two terminals like before and create
some events with httpie you will see something similar to the below message in the
console of the frontend actor system:

Which shows that the frontend actor system is actually sending a message to the
remote deployed boxOffice. The actor path is different than you would expect. It
keeps track of where the actor was deployed from. The remote deamon that listens
for the backend actorsystem uses this information to communicate back to the
frontend actorsystem.

What we have worked up so far works, but there is one problem with this
approach. If the backend actor system is not started when the frontend tries to
deploy the remote actor the deployment obviously fails, but what is maybe not so
obvious is that the ActorRef is still created. Even if the backend actor system is
started later the created ActorRef does not work. This is correct behavior since it is
not the same actor instance. (As distinguished from the prior failure cases we saw,
where only the actor itself is restarted, in which case the ref will still point to the
recreated Actor.)

If we want to do something when the remote backend crashes or the remote
boxOffice actor crashes we will have to make some more changes. We'll have to
watch the boxOffice ActorRef like we did before and take actions when this
happens. Since the RestInterface has a val reference to the boxOffice we will need
to once again put an Actor in between the way we did with the RemoteLookup
actor. This in between actor will be called .RemoteBoxOfficeForwarder

The configuration needs to be changed slightly since the boxOffice now has the
path because of therestInterface/forwarder/boxOffice

 port =port)
 }

// very long message, formatted in a couple of lines to fit.
INFO [RestInterface]: Received new event Event(RHCP,10), sending to
Actor[akka.tcp://backend@0.0.0.0:2552/remote/akka.tcp/
 frontend@0.0.0.0:2551/user/restInterface/boxOffice#-1230704641]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

161

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://backend@0.0.0.0:2552/remote/akka.tcp/frontend@0.0.0.0:2551/user/restInterface/boxOffice#-1230704641]
tcp://backend@0.0.0.0:2552/remote/akka.tcp/frontend@0.0.0.0:2551/user/restInterface/boxOffice#-1230704641]
http://www.manning-sandbox.com/forum.jspa?forumID=835

RemoteBoxOfficeForwarder in between. instead of the
 path in the deployment section it should now/restInterface/boxOffice

read as ./restInterface/forwarder/boxOffice

Listing 6.11 shows the ConfiguredRemoteBoxOfficeDeployment

trait and the that will watch the remoteRemoteBoxOfficeForwarder

deployed actor.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

162

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 6.11 Watch Mechanisms for Remote Actors

Create a forwarder that watches and deploys the remote BoxOffice
Remotely deploy and watch the BoxOffice
watch the remote BoxOffice for termination

trait ConfiguredRemoteBoxOfficeDeployment
 extends BoxOfficeCreator { this:Actor =>

 override def createBoxOffice = {
 context.actorOf(Props[RemoteBoxOfficeForwarder],

 "forwarder")
 }
}

class RemoteBoxOfficeForwarder extends Actor with ActorLogging {
 context.setReceiveTimeout(3 seconds)

 deployAndWatch()

 def deployAndWatch(): Unit = {
 val actor = context.actorOf(Props[BoxOffice], "boxOffice")

 context.watch(actor)
 log.info("switching to maybe active state")

 context.become(maybeActive(actor))
 context.setReceiveTimeout(Duration.Undefined)
 }

 def receive = deploying

 def deploying:Receive = {

 case ReceiveTimeout =>
 deployAndWatch()

 case msg:Any =>
 log.error(s"Ignoring message $msg, not ready yet.")
 }

 def maybeActive(actor:ActorRef): Receive = {

 case Terminated(actorRef) =>
 log.info("Actor $actorRef terminated.")
 log.info("switching to deploying state")
 context.become(deploying)
 context.setReceiveTimeout(3 seconds)
 deployAndWatch()
 case msg:Any => actor forward msg
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

163

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Switch to 'maybe active' once the actor is deployed. We can't be sure without using
lookup if the actor is deployed.
The deployed boxoffice is terminated so it's certain that a retry deployment is
needed.

The above looks very similar to the RemoteBoxOfficeForwarder

 class in the previous section in that it is also a state machine, inRemoteLookup

this case it is in one of two states; 'deploying' or 'maybe active'. Without doing a
actor selection lookup we can't be sure that the remote actor is actually deployed.
The exercise to add remote lookup with actorSelection to the
RemoteBoxOfficeForwarder is left to the reader, for now the 'maybe' active state
will do.

The Main class for the frontend needs to be adapted to mix in the
ConfiguredRemoteBoxOfficeDeployment into the RestInterface. The

 class shows how this trait is mixed in:FrontendRemoteDeployWatchMain

Running the and the FrontendRemoteDeployWatchMain

 on two sbt console terminals shows how theBackendRemoteDeployMain

remote deployed actor is watched and how it is redeployed when the backend
process is killed and restarted again, or when the frontend is started before the
backend.

In case you just read over the previous paragraph and though 'meh,' read that
paragraph again. The app is automatically redeploying an actor when the node it
runs on reappears and continues to function. This is cool stuff and we've only
scratched the surface!

That concludes this section on remote deployment. We've looked at both
remote lookup and remote deployment and what is required to do this in a resilient
way. Even in the situation where you only have two servers it's a major benefit to
have resilience built in from the start. In both lookup and deployment examples the
nodes are free to startup in any order. The remote deployment example could have
been done purely by changing the deployment configuration but we would have

class RestInterfaceWatch extends RestInterface
with ConfiguredRemoteBoxOfficeDeployment

val restInterface = system.actorOf(Props[RestInterfaceWatch],
"restInterface")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

164

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

ended up with a too naive solution which did not take node or actor crashes into
consideration and would have required a specific startup order.

In the section 6.26 we're going to look at the multi-jvm sbt plugin and the
akka-multi-node-testkit which makes it possible to test the frontend and backend
nodes in the goticks app.

The sbt multi-jvm plugin makes it possible to run tests across multiple JVMs,
which we will want to do now that we are making the app distributed. The sbt
multi-jvm plugin needs to be registered with sbt in the project/plugins.sbt file:

We also have to add another sbt build file to use it. the Multi-JVM plugin only
supports the scala DSL version of SBT project files so we need to add a
GoTicksBuild.scala file in the chapter6/project folder. SBT merges the build.sbt
and the below file automatically, which means that the dependencies don't have to
be duplicated in listing 6.12.

6.2.5 Multi-JVM testing

addSbtPlugin("com.typesafe.sbt" % "sbt-multi-jvm" % "0.3.5")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

165

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 6.12 Multi-JVM Configuration

Make sure our tests are part of the default test compilation
Turn off parallel execution
Make sure executed as part of default test target

If you're not an SBT expert, don't worry about the details of this build file here.
The above basically configures the multi-jvm plugin and makes sure that multi-jvm
tests are executed along with the normal unit tests. SBT in Action
(http://www.manning.com/suereth2/) does a great job at explaining the details of
SBT if you would like to know more about it.

Multi JVM tests need to be added to the folder bysrc/multi-jvm/scala

default. Now that our project is setup correctly for multi-jvm tests we can start with

import sbt._
import Keys._
import com.typesafe.sbt.SbtMultiJvm
import com.typesafe.sbt.SbtMultiJvm.MultiJvmKeys.{ MultiJvm }

object GoTicksBuild extends Build {

 lazy val buildSettings = Defaults.defaultSettings ++
 multiJvmSettings ++
 Seq(
 crossPaths := false
)

 lazy val goticks = Project(
 id = "goticks",
 base = file("."),
 settings = buildSettings ++ Project.defaultSettings
) configs(MultiJvm)

 lazy val multiJvmSettings = SbtMultiJvm.multiJvmSettings ++
 Seq(
 compile in MultiJvm <<=
 (compile in MultiJvm) triggeredBy (compile in Test),
 parallelExecution in Test := false,
 executeTests in Test <<=
 ((executeTests in Test), (executeTests in MultiJvm)) map {
 case ((_, testResults), (_, multiJvmResults)) =>
 val results = testResults ++ multiJvmResults
 (Tests.overall(results.values), results)
 }
)
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

166

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning.com/suereth2/
http://www.manning-sandbox.com/forum.jspa?forumID=835

a unit test for the frontend and backend of the goticks.com app. First a
 needs to be defined which describes the roles of the nodesMultiNodeConfig

that are tested. The below listing shows the multi node config for the client server
(frontend and backend) configuration:

The frontend role
The backend role

Two roles have been defined, the frontend and the backend as you would
expect. The roles will be used to identify the node for unit testing and to run
specific code on each node for testing purposes. Before we start to write a test we
need to write some infrastructure code to hookup the test into scalatest:

Get callbacks by extending TestKit's class
Get the rest of the test traits we need
Make all our tests use our before and after methods

This trait is used to startup and shutdown the multi node test which you can
reuse for all your multi node tests. It is mixed into the unit test specification. Now
for the test which is shown below. It's quite a bit of code so let's break it down. The
first thing we need to do is create a which mixes in theMultiNodeSpec

 object ClientServerConfig extends MultiNodeConfig {

 val frontend = role("frontend")

 val backend = role("backend")
 }

 import akka.remote.testkit.MultiNodeSpecCallbacks
 import org.scalatest.{BeforeAndAfterAll, WordSpec}
 import org.scalatest.matchers.MustMatchers

 trait STMultiNodeSpec extends MultiNodeSpecCallbacks

 with WordSpec with MustMatchers with BeforeAndAfterAll {

 override def beforeAll() = multiNodeSpecBeforeAll()

 override def afterAll() = multiNodeSpecAfterAll()
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

167

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

STMultiNodeSpec we just defined. Two versions of the ClientServerSpec will
need to run on two separate JVMs. The code in listing 6.13 shows how two

 classes are defined for this purpose.ClientServerSpec

Listing 6.13 Spec Classes for Multi Node Tests

The Spec that will run on the 'frontend' JVM
The Spec that will run in the 'backend' JVM
The number of nodes that participate in the test.
The Spec which describes what both nodes should do.

The uses the and also an ClientServerSpec STMultiNodeSpec

 trait. The trait sets the testActor as theImplicitSender ImplicitSender

default sender for all messages, which makes it possible to just call expectMsg

and other assertion functions without having to set the testActor as the sender of
messages every time. The code in listing 6.14 shows how we make this happen.

Listing 6.14 Configuring the TestActor

Import the config so we can access the backend role

class ClientServerSpecMultiJvmFrontend extends ClientServerSpec

class ClientServerSpecMultiJvmBackend extends ClientServerSpec

class ClientServerSpec extends MultiNodeSpec(ClientServerConfig)
with STMultiNodeSpec with ImplicitSender {

 def initialParticipants = roles.size

 import ClientServerConfig._

 trait TestRemoteBoxOfficeCreator

 extends RemoteBoxOfficeCreator { this:Actor =>

 override def createPath: String = {

 val actorPath = node(backend) / "user" /"boxOffice"
 actorPath.toString
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

168

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The TestRemoteBoxOfficeCreator will be used in the test instead of the
RemoteBoxOfficeCreator.
override the createPath method so it can return a path to the test system on the
backend node for testing
The node() method returns the address of the backend role node during test. the
expression here creates an ActorPath.

The backend and frontend role nodes run on a random port by default. The
TestRemoteBoxOfficeCreator replaces the RemoteBoxOfficeCreator in the test
since it creates a path from a configured host, port and actor name in the
frontend.conf file. Instead we want to use the address of the backend role node
during testing and lookup a reference to the boxOffice actor on that node. The
above code achieves this. Listing 6.15 shows tests of our distributed architecture.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

169

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 6.15 Testing the Distributed Architecture

 "A Client Server configured app" must {

 "wait for all nodes to enter a barrier" in {

 enterBarrier("startup")
 }

 "be able to create an event and sell a ticket" in {

 runOn(frontend) {

 enterBarrier("deployed")

 val restInterface = system.actorOf(
 Props(new RestInterfaceMock

 with TestRemoteBoxOfficeCreator))

 val path = node(backend) / "user" / "boxOffice"

 val actorSelection = system.actorSelection(path)

 actorSelection.tell(Identify(path), testActor)

 val actorRef = expectMsgPF() {

 case ActorIdentity(`path`, ref) => ref
 }

 restInterface ! Event("RHCP", 1)

 expectMsg(EventCreated)

 restInterface ! TicketRequest("RHCP")

 expectMsg(Ticket("RHCP", 1))
 }

 runOn(backend) {

 system.actorOf(Props[BoxOffice], "boxOffice")

 enterBarrier("deployed")
 }

 enterBarrier("finished")
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

170

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Let all nodes startup
Test scenario for the frontend and backend node
Run the code in this block on the frontend JVM
Wait for the backend node to deploy.
Create a mock Rest Interface.
get an actor selection to the remote box office
Send an Identify message to the actor selection
Wait for the boxOffice to report that it is available. The RemoteLookup class will
go through the process of getting an ActorRef to the boxOffice.
Expect messages as usual with the TestKit.
Run the code in this block on the backend JVM
Create the boxOffice with name "boxOffice" so the RemoteLookup class can find
it.
Signal that the backend is deployed.
Indicate that the test has completed.

There is quite a lot going on here. The unit test can be broken up in four pieces.
First it waits for all nodes to start by using the enterBarrier("startup")

call which executes on both nodes. The actual test then continues to specify what
code should be run on the frontend node and the backend node. The frontend node
waits for the backend node to signal that it is deployed and executes a test.

The backend node only starts the boxOffice so it can be used from the frontend
node. Since we would have to add HTTP client requests if we would use the real
RestInterface for now we'll use a RestInterfaceMock class. This actor mixes in the
TestRemoteBoxOfficeCreator trait which confers behavior that is nearly identical
to the RemoteBoxOfficeCreator trait, except that it gets the path from the backend
node under test. Since the RemoteLookup actor is still used (the createBoxOffice
method is not overridden) we will need to wait for the remote actorRef to have
been identified. The actorSelection is used for this purpose and we expect a
ActorIdentity message before we start sending messages to the remote boxOffice
for testing.

After that we can finally test the interactions between the frontend and the
backend node. We can use the same methods that we used in chapter 2 for
expecting messages. This multi-jvm test can be run by executing the

 command in sbt, give it a try.multi-jvm:test

Figure 6.6 shows how the test actually flows. Note that the coordination of the
various collaborators, and their runtimes, if made pretty much automatic by the
multi-jvm test kit. Doing this with your own hand hewn code would be a lot of
work.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

171

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 6.6 Multi-JVM Test Flow

The chapter6 project also has a unit test for a single node version of the app and
apart from some of the infrastructure setup the test is basically the same. The
example multi-jvm test here just shows how an app that was initially built for a
single node can be adapted to run on two nodes. The big difference between the
single node and the client server setup is how the actor reference to the remote
system is found; is it looked up or deployed remotely. Having a Remote Lookup in
between the RestInterface and the boxOffice gave as some flexibility and the
ability to survive crashes. It gave an interesting problem to solve in the example
unit test; how do we wait for the remote ActorRef to the boxOffice to become
available? the actorSelection and Identity message mechanism were the answer for
this.

This concludes our first look at the multi-node-testkit module. We'll see more
of it in the chapters to come. The test above shows an example of how the
goticks.com app can be unit tested in a distributed environment. In this case it runs

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

172

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

on two JVM's on a single machine. As we will see later in chapter 13 the
multi-node-testkit can also be used to run unit tests on several servers.

Do you remember the reason we gave at the beginning of the chapter for why we
couldn't just flip a switch and have our app work in a distributed fashion (using
remoting)? It was because we have circumstances that we have to account for in
the network world that our local only app is able to completely ignore. As you
would expect, much of what we ended up having to actually do in this chapter
boiled down to just accounting for those new circumstances, and as predicted,
Akka made it easy.

Despite the fact that we had to make some changes, we also found a lot of
constancy:

We benefited from the fact that an ActorRef behaves the same whether
the Actor is local or remote.

The monitoring API for death watch of distributed systems is exactly the
same as for local systems.

Despite the fact that collaborators were now separated by the network, by
simply using forwarding (in the RemoteLookup and
RemoteBoxOfficeForwarder), we transparently allowed the RestInterface
and BoxOffice to communicate with each other.

This is important because taking our app to the next level does not require that
we either unlearn what we have learned, or learn a whole new load of stuff; the
basic operations remain largely the same, which is the hallmark of a well designed
toolkit.

We also learned a some new things:

REPL provides us an easy, interactive means of getting our stuff going in
the distributed topology of our choice.

The multi-node-testkit which makes it incredibly easy to test distributed
actor systems no matter if they are built with akka-remote, akka-cluster or
even both. (Akka is rather unique in providing proper unit testing tools for a
distributed environment.)

6.3 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

173

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

We have intentionally not dealt with the fact that messages will get lost in the
RemoteLookup and RemoteBoxOfficeForwarder when the backend node is not
available. In upcoming chapters, we will:

see how a Reliable Proxy can be used for messaging between peer nodes

fix goticks to deal with the fact that the state of the TicketSellers is lost
when a backend node crashes

how state can be replicate across a cluster

But before we get there lets look at dynamic node memberships with the
akka-cluster module in the next chapter.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

174

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

7
In this chapter

configuration
logging
stand-alone applications
web applications
deployment

Thus far, we have focused on creating actors and working with the actor
system. To create an application which can actually be run, we will need several
other things to be bundled with it before it's ready for deployment. First, we'll dive
into how Akka supports configuration, then we will look at logging, including how
you can use your own logging framework. Then we will go through two
deployment examples: the first will be a stand-alone application and the second a
web-based one.

Akka uses the Typesafe Config Library, which sports a pretty state-of-the-art set of
capabilities. Of course, the typical features are there: the ability to define properties
in different ways and then reference them in the code (job one of configuration is
to grant us runtime flexibility by making it possible to use variables outside the
code). There is also a sophisticated means of merging multiple configuration files
based on simple conventions that determine how overrides will occur. One of the
most important requirements of a configuration system is providing us a means of
targeting multiple environments (e.g. development, testing, production), without
having to explode the bundle. We will see how that is done as well.

Configuration, Logging and Deployment

7.1 Configuration

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

175

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Like other Akka libraries, the Typesafe Config Library also takes pains to
minimize the dependencies that are needed; it has no dependencies on other
libraries. We start with a quick tour of how to use the configuration library.

First the library uses a hierarchy of properties.

Figure 7.1 Configuration example

To get the configuration, the ConfigurationFactory is used. The library of
course also supports the ability to specify which configuration file is used, and in
the next sections, we will be looking at the configuration files in more detail, but
for now we will start by using the default one.

Listing 7.1 Getting configuration

When using the default, the library will try to find the configuration file. Since
the library supports a number of different configuration formats, it looks for
different files, in the following order:

application.properties
This file should contain the configuration properties in the java property file format.
application.json
This file should contain the configuration properties in the json style
application.conf

7.1.1 Trying Out Akka Configuration

val config = ConfigFactory.load()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

176

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

This file should contain the configuration properties in the HOCON format. This is a
format based on json but easier to read..

It is possible to use all the different files at the same time. For the example
below, in listing 7.2 we use the last file:

Listing 7.2 application.conf

Nesting is done by simply grouping with {}s

For simple applications, this file will often suffice. The format looks kind of
like JSON. The primary advantage is that it's more readable and it's easy to see
how properties are being grouped. JDBC is a perfect example of properties most
apps will need that are better grouped together. In the dependency injection world,
you would group items like this by controlling the injection of the properties into
objects (e.g. DataSource). This is a simpler approach. Let's look at how we can
make use of these properties, now that we've define them.

There are several methods to get the values as different types and the "." is used
as the separator in the path of the property.

Listing 7.3 Getting properties

we can use the connect string from inside the database {}s from the prior listing

Sometimes, an object doesn't need much configuration. What if we have an
object that is creating the database connection. It needs only the connect string and
the user. When we pass the configuration, the object needs to know the path of the

MyAppl {
 version = 10
 description = "My application"

 database {
 connect="jdbc:mysql://localhost/mydata"
 user="me"
 }
 }

val applicationVersion = config.getInt("MyAppl.version")

val databaseConnectSting = config.getString("MyAppl.database.connect")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

177

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

mysql://localhost/mydata
http://www.manning-sandbox.com/forum.jspa?forumID=835

property. But when you want to reuse that object a problem rises. The start of the
path is "MyAppl" another application has probably another configuration root. And
therefore, the path to the property has changed. This can be solved by using the
functionality of getting a subtree as configuration.

Listing 7.4 Getting a configuration subtree

First get the subtree by name
Then reference the property as relative to the subtree root

Using this approach, you give the databaseCfg to the object and it doesn't need
the full path of the property, only the last part, the name of the property. This
means the object can be reused without introducing path problems.

It is also possible to perform substitutions when you have a property that is
used multiple times in your configuration, for example the host name of the
database connect string.

Listing 7.5 substitution

Simple variable definition, no types needed of course (note quotes though)
Then the familiar ${} substitution syntax

Config file variables are often used for things like the application name, or for
version numbers, as repeating them in many places in the file could potentially be
dangerous. It is also possible to uses system properties or environment variables in
the substitutions as well.

val databaseCfg = configuration.getConfig("MyAppl.database")

val databaseConnectSting = databaseCfg.getString("connect")

hostname="localhost"
MyAppl {
 version = 10
 description = "My application"
 database {

 connect="jdbc:mysql://${hostname}/mydata"
 user="me"
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

178

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.6 system property or environment variable substitution

The ? signifies getting the value from an environment variable

But the problem with these properties is that you never know for sure that these
properties exits. To solve this we can make use of the possibility that redefinition
of a property overrules the previous definition. And the substitution of a system
property or environment variable definition simply vanishes if there's no value for
the specified property HOST_NAME. Listing 7.7 shows how to do this.

Listing 7.7 system property or environment variable substitution

Define the usual simple way first
If there is an env var, override, otherwise, leave it with the value we just assigned

It's pretty easy to see what's going on here. Defaults are important in
configuration because we want to force the user to do as little configuration as

hostname=${?HOST_NAME}
MyAppl {
 version = 10
 description = "My application"
 database {
 connect="jdbc:mysql://${hostname}/mydata"
 user="me"
 }
}

hostname="localhost"

hostname=${?HOST_NAME}
MyAppl {
 version = 10
 description = "My
 application"
 database {
 connect="jdbc:mysql://${hostname}/mydata"
 user="me"
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

179

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

possible. Furthermore, it's often the case that apps should run with no configuration
until they really need to be pushed into a production environment; development
usage can often be done with nothing but defaults.

Let's continue with our simple JDBC configuration. It's generally safe to assume
that developers will be connecting to a database instance on their own machine,
referenced as 'localhost.' As soon as someone wants to see a demo, we will be
scrambling to get the app working on an instance somewhere, that will no doubt
have different names and the database will likely be on another machine. The
laziest thing we could do is just make a copy of the whole config file and give it a
different name, then have some logic in the app that says 'use this file in this
environment, and this one in another.' The problem with this is that now we have
all our configuration in 2 places. Makes more sense to just override the 2 or 3
values that are going to be different in the new target environment. The defaulting
mechanism will allos us to do that easily. The configuration library contains a
fall-back mechanism; the defaults are placed into a configuration object which is
then handed over to the configurator as the fall-back configuration source. Figure
7.2 shows a simple example of this.

Figure 7.2 Configuration fall-back

SIDEBAR Preventing Null Properties
The defaulting mechanism prevents cases of the values being different
depending on where they are being used. As a result of this principle,
when a configuration property is read, the value should always be set. If
the framework were to allow the property to be empty, again the code
would behave differently based on how (and where) configuration was
done. Therefore, when getting a property that isn't set, an exception is
thrown.

This fall-back structure grants us a lot of flexibility. But of course, for it to
provide the defaults we need, we have to know how to configure them. They are

7.1.2 Using Defaults

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

180

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

configured in the file reference.conf and placed in the root of the jar file; the idea is
that every library contains its own defaults. The configuration library will find all
the reference.conf files and integrate these settings into the configuration fall-back
structure. This way all the needed properties of a library will always have a default
and the principle of having always getting some value back will be preserved.
(Later, we'll see that we can also explicitly stipulate defaults programmatically as
well.)

We already mentioned that the configuration library supports multiple formats.
There's nothing stopping you from using multiple formats in a single application.
Each file can be used as the fall-back of another file. And to be able to support the
possibility of overruling properties with system properties, the higher ranking
configuration contains these. The structure is always the same, so the relationships
between defaults and overrides is likewise always the same. Figure 7.3 shows the
files the config library uses to build the complete tree, in priority order.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

181

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 7.3 Priority of the Configuration
fall-back structure

Most applications will use only one of these application file types. But if you
want to provide on set of application defaults, then override some of them, as we
want to do with our JDBC settings, we can do that and just following this guide,
realize that the upper configurations shown in figure 7.3 will overrule the values
defined in the lower configurations.

By default, the file application.{conf,json,properties} is used to read the
configuration. There are two ways to change the name of the configuration file.
The first option is to use an overloaded load function on the ConfigurationFactory.
When loading the configuration, the name of the base should be supplied, as shown
in figure 7.8.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

182

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.8 Changing configuration file

Simply ask the factory to load our new name

This way it doesn't try to load application.{conf,json,properties}, but
myapp.{conf,json,properties}. (This is required if you need to have multiple
configurations in a single JVM.)

Another option is to use system properties. Sometimes, this is the easiest thing
because you can just create a bash script and set a property and the app will pick it
up and start using it (better than exploding jars or wars to monkey with the files
inside).

config.resource specifies a resource name - not a base-name, i.e. application.conf not
application
config.file specifies a file system path, again it should include the extension
config.url specifies a URL

System properties can be used for the name of the configuration file, when
using the load method without arguments. When using one of these properties the
default behavior of searching for the different formats conf, json and properties is
skipped.

OK we have seen how we can use the configuration library for our application's
properties, but what do we need to do when we find ourselves wanting to change
some of Akka's configuration options? How is Akka using this library? It is
possible to have multiple ActorSystems which have their own configuration. When
no configuration is present at creation, the actor system will use create the
configuration using the defaults. Listing 7.9 shows what this looks like.

Listing 7.9 Default configuration

val config = ConfigFactory.load("myapp")

7.1.3 Akka Configuration

val system = ActorSystem("mySystem")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

183

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Creating uses internally ConfigFactory.load()

But it is also possible (and useful) to supply the configuration while creating an
ActorSystem. Listing 7.10 shows a simple way of accomplishing this.

Listing 7.10 Use specified configuration

First, load the configuration, providing our name
then pass it to the ActorSystem constructor

The configuration is within your application; it can be found in the settings of
the ActorSystem.

Listing 7.11 Access to the configuration from the running app

Once the ActorSystem is constructed, we can get the config just by referencing it
using this path
Then we just get a property as we would ordinarily

By this point, we have seen how we can use the configuration system for our
own properties, and how to use the same system to configure the ActorSystem that
is the backbone of Akka. The presumption through these first two sections has
been that we have but one Akka app on the given system that is hosting us. In the
next section, we will discuss configuring systems that share a single instance.

val configuration = ConfigFactory.load("mysystem")

val systemA = ActorSystem("mysystem",configuration)

val mySystem = ActorSystem("myAppl")

val config = mySystem.settings.config

val applicationDescription = config.getString("myAppl.name")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

184

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Depending on your requirements, it may be necessary to have different
configurations, say for multiple subsystems, on a single instance (or machine).
There are several ways Akka supports this. Let's start by looking at cases where
you are using several JVMs, but they run in the same environment using the same
files. We already described the first option: the use of system properties. When
starting a new process, a different configuration file is used. But most of the time a
lot of the configuration is the same for all the subsystems and only a small part
differs. This problem can be solved by using the include option.

Let us look at an example. Let's say we have a baseConfig file like the one in
listing 7.12.

Listing 7.12 baseConfig.conf

For this example, we start with this simple configuration root, which would
most likely have one shared and one differing property: the version number is
likely to be the same across subsystems, but we will probably want different names
and descriptions for each subsystem.

Listing 7.13 subAppl.conf

simply name the config file we want to include (no extension)
then provide the new description

Because the include is before the rest of the configuration, the value for
description is overridden just as it was in a single file. This way, you can have one
basic configuration and only the differences needed in the specific configuration

7.1.4 Multiple systems

MyAppl {
 version = 10
 description = "My application"
 }

include "baseConfig"
MyAppl {

 description = "Sub Application"
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

185

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

files for each subsystem.
But what if the sub systems are running in the same JVM. Then we can't use the

system properties to read other configuration files. How should we do the
configuration then? We have already discussed what's needed for this next case:
we can use an application name when loading the configuration. And of course we
can also use the include method to group all the configuration that is the same. The
only drawback is the possible number of configuration files. If that's a concern,
there is another solution that leverages the ability to merge configuration trees
using the fall-back mechanism.

We start by combining the two configurations into one (see listing 7.14)

Listing 7.14 combined.conf

by lifting this, we get the shared property (version) and override the description

The trick we are using is that we take a subtree within subApplA of the
configuration and put that in front of the configuration chain. This is called lifting a
configuration, because the configuration path is shortened. Figure 7.4 shows how
this is done.

MyAppl {
 version = 10
 description = "My application"
}

subApplA {

 MyAppl {
 description = "Sub application"
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

186

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 7.4 Lifting configuration part

When we request the property MyAppl.description, we get the result of "Sub
application" because that was set in the configuration at the highest level and when
we ask for MyAppl.version we get the value 10 because this wasn't defined in the
higher configuration, so it uses the normal fall-back mechanism to get the value.
Listing 7.15 shows how we load the configuration to have both the lift and the
callback. Notice, the fallback is chained programmatically here (not relying on the
file conventions we covered above).

Listing 7.15 Lift example with fallback

Select the subtree subApplA
Add the configuration as fall-back

 val configuration = ConfigFactory.load("combined")

 val subApplACfg = configuration.getConfig("subApplA")

 val config = subApplACfg.withFallback(configuration)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

187

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Configuration is a crucial part of delivering applications: though it starts out
iwth meager requirements that are usually easily met, invariably, demands appear
that can complicate matters, and quite often the configuration layer of an
application becomes very tangled and complex. The Typesafe Config Library gives
us a number of powerful tools to prevent this from happening:

Easy defaulting based on convention (with overrides)

Sophisticated defaulting that allows us to require the least amount of
configuration necessary

Several syntax options from traditional, through Java, JSON, and
HOCON.

We have not come near exhausting this topic, but we have shown you enough
that youc an deal with a pretty broad range of typical requirements that will come
up as you start to deploy Akka solutions. In the next section, we tackle logging,
which is not only critical, but developers tend to have strong opinions and they
tend to want to use what they are used to. We will address how Akka allows this,
through configuration.

Another function each application needs is to be able to write messages to a log
file. Because everyone has their own preferences regarding which logging library
to use, the Akka toolkit has implemented a logging adapter to be able to support all
kinds of logging frameworks and also minimize the dependencies on other
libraries. As was the case with configuration, there are two sides to logging: how
you use the log for your application-level logging needs, and how you can control
what Akka puts into the logs (which is a critical part of debugging). We'll cut the
same path starting with the application use of logging.

Just as you would in normal Java or Scala code, you are going to have to create a
logger instance inside any Actor that needs to put messages into the log. Listing
7.16 shows how we do that.

7.2 Logging

7.2.1 Logging in an Akka Application

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

188

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.16 Creating logging adapter

The first thing that is notable is that the ActorSystem is needed. This is done so
there is a separation of the logging from the used framework. The logging adapter
uses the system eventStream to send the log messages to the eventhandler. The
eventStream is the publish-describe system of Akka (which is described later). But
for now the eventhandler receives these message and uses the preferred logging
framework to log the message. This way all the actors can log and only one actor
has a dependency on the specific logging framework implementation. Which
eventHandler is used can be configured. Another advantage is that logging means
IO and IO is always slow, and in a concurrent environment, this can be even worse
because you have to wait until another thread is done writing its log messages. So
in a high performance application you don't want to wait until the logging is done.
Using the eventHandler, the actors logging don't have to wait. Listing XREF
default-akka-logger-config shows the configuration required for the default
event-handler to be created.

Listing 7.17 Configure eventHandler

This eventHandler doesn't use a log framework, but logs all the received
messages to standard out. When you want to create your own eventhandler you
have to create an Actor which handles several messages. An example of such
handler is

class MyActor extends Actor {
 val log = Logging(context.system, this)
 ...
 }

akka {
 # Event handlers to register at boot time
 # (Logging$DefaultLogger logs to STDOUT)
 event-handlers = ["akka.event.Logging$DefaultLogger"]
 # Options: ERROR, WARNING, INFO, DEBUG
 loglevel = "DEBUG"
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

189

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.18 My eventHandler

Upon receipt of this message, the initialization of your handler can be done, and
when complete, a LoggerInitialized should be sent to the sender
An error message is received, log this message or not. Here you can add some logic
of filtering log records when your log framework doesn't support this
A warning message is received
An information message is received
An debug message is received

This is a very simple example and is only showing the message protocol. In real
life, this Actor will of course be more complex. The Akka toolkit has two
implementations of this logging eventHandler. The first is already mentioned and
that is the default logger to STDOUT. The second implementation is using SLF4J.
This can be found in the akka-slf4j.jar. To use this handler add the following
configuration to your application.conf

import akka.event.Logging.InitializeLogger
import akka.event.Logging.LoggerInitialized
import akka.event.Logging.Error
import akka.event.Logging.Warning
import akka.event.Logging.Info
import akka.event.Logging.Debug
class MyEventListener extends Actor
{
 def receive = {
 case InitializeLogger(_) =>

 sender ! LoggerInitialized
 case Error(cause, logSource, logClass, message) =>

 println("ERROR " + message)
 case Warning(logSource, logClass, message) =>

 println("WARN " + message)
 case Info(logSource, logClass, message) =>

 println("INFO " + message)
 case Debug(logSource, logClass, message) =>

 println("DEBUG " + message)
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

190

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.19 Use slf4j eventHandler

Let's revisit the creation of the Akka logger instance that we first saw in listing
7.16. We discussed the first part of the creation process (the ActorSystem). If you
recall, there was a second parameter; here it is again in listing 7.20.

Listing 7.20 Revisiting the creation of the logger

The second parameter of the Logging is used to as the source of this logging
channel. In this case, it is the class instance. The source object is translated to a
String to indicate the source of the log messages. The translation to a string is done
according to the following rules:

if it is an Actor or ActorRef, its path is used
in case of a String, the string is used
in case of a class an approximation of its simpleName is used

For convenience you can also use the ActorLogging trait to mix-in the log
member into actors. This is provided because most of the time you want to use the
logging as shown in listing 7.21.

akka {
 event-handlers =
 ["akka.event.slf4j.Slf4jEventHandler"]
 # Options: ERROR,
 WARNING,
 INFO, DEBUG
 loglevel = "DEBUG"
 }

7.2.2 Using Logging

class MyActor extends Actor {
 val log = Logging(context.system, this)
 ...
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

191

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.21 Creating logging adapter

The adapter also supports the ability to use placeholders in the message.
Placeholders prevent you from having to check logging levels. If you construct
messages with concatenation, the work will be done each time, even if the level
precludes the insertion of the message in the log! Using placeholders, you don't
have to check the level (e.g. if (logger.isDebugEnabled())), and the message will
only be created if it would be included in the log given the current level. The
placeholder is the string "{}" in the message. Listing 7.22

Listing 7.22 Using place holders

Nothing too disorienting here, most people who have been doing logging in
Java or a VM language will find this fairly familiar. One of the other common
logging challenges that can cause developers headaches is learning how to get
control of the logging of the various toolkits or frameworks your app is using. For
example, if you have a persistence provider, eventually you will need to be able to
turn up its logging to see what it's doing. In the next section we will show how this
is done with Akka.

class MyActor extends Actor with
 ActorLogging {
 ...
 }

log.debug("two parameters: {}, {}", "one","two")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

192

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

While developing an application, one needs sometimes very low debug level of
logging. Akka is able to log records when certain internal events happen or the log
has processed certain messages. These log messages are intended for developers
and aren't meant for operations. Thankfully, given the architecture that we have
discussed already, we don't have to worry about the possibility that our chosen
logging framework and the one Akka uses are not the same, or worse, conflict with
each other. Akka provides a simple configuration layer that allows you to exert
some control over what it outputs to the log, and as we are both using the pubsub
attached to a single adapter, once we change these settings, we will see the results
in whatever our chosen appenders are (console, file, etc.). The Listing below (7.23)
shows the settings we can manipulate to elicit more or less information from Akka
in the logs.

7.2.3 Controlling Akka's logging

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

193

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.23 Akka's Logging configuration file

Log messages received by your Actors, requires the use of
akka.event.LoggingReceive when processing messages

The comments explain most of these options (see the annotation for the receive
property and its additional requirement). Notice also that we are shielded from one
of the major annoyances of having to tweak the configuration of a framework or
toolkit: knowing which packages to change levels on. This is another inherent

akka {
 # logging must be set to
 DEBUG to use any of the options below
 loglevel = DEBUG
 # Log the complete configuration at INFO level when the actor
 # system is started. This is useful when you are uncertain of
 # what configuration is used.
 log-config-on-start = on
 debug {
 # logging of all user-level messages that are processed by
 # Actors that use akka.event.LoggingReceive enable function of
 # LoggingReceive, which is to log any received message at
 # DEBUG level

 receive = on
 # enable DEBUG logging of all AutoReceiveMessages
 # (Kill, PoisonPill and the like)
 autoreceive = on
 # enable DEBUG logging of actor lifecycle changes
 # (restarts, deaths etc)
 lifecycle = on
 # enable DEBUG logging of all LoggingFSMs for events,
 # transitions and timers
 fsm = on
 # enable DEBUG logging of subscription (subscribe/unsubscribe)
 # changes on the eventStream
 event-stream = on
 }
 remote {
 # If this is "on", Akka will log all outbound messages at
 # DEBUG level, if off then they are not logged
 log-sent-messages = on
 # If this is "on," Akka will log all inbound messages at
 # DEBUG level, if off then they are not logged
 log-received-messages = on
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

194

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

advantage of message-based systems (the notion that they are pretty
self-explanatory, by just watching the message traffic flow between the
collaborators).

Listing 7.24 Using LoggingReceive

add the LoggingReceive trait so we can see actor messages as log traces

Now when you set the property akka.debug.receive to on, the messages
received by our actor will be logged.

Again, we have not exhausted the topic of logging, but we have shown you
enough to really get going, and to ease your understandable anxiety about whether
you will be expected to use some other approach, or to have to wrangle with two
different loggers (yours and the Akka's). Logging is a critical tool which you could
argue is even more useful in message-passing systems, where the process of just
stepping along a single line of executing code in a debugger is often not possible.
In the next section, we will discuss the last requirement of application delivery:
deployment.

We have already seen how we can use the ActorSystem and Actors, do the
configuration and logging. But it takes more to create an application. Everything
has to come together, the system should be started and a deployment has to be
created. In this section we show two possible ways to create an application. The
first is a simple stand-alone application. The other application will be a web-based
application using Play-mini. These are simple examples to give you an idea how
easy it is to create an application.

To create a stand alone application we use the MicroKernel of Akka combined
with the akka-plugin to create a distribution. We start with the HelloWorld Actor.
This actor is a simple actor that receives a message and replies with a hello
message.

class MyActor extends Actor with ActorLogging {
 def receive = LoggingReceive {
 case ... => ...
 }
}

7.3 Deploying Actor-based Applications

7.3.1 Stand-alone application

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

195

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.25 HelloWorld Actor

Using the ActorLogging trait to be able to log messages

Next we need an Actor that calls the HelloWorld actor. Lets call this the
HelloWorldCaller

Listing 7.26 HelloWorldCaller

Using the Akka scheduler to send messages to yourself
The duration before the schedule is triggered for the first time

class HelloWorld extends Actor

 with ActorLogging {

 def receive = {
 case msg:String =>
 val hello = "Hello %s".format(msg)
 sender ! hello
 log.info("Sent response {}",hello)
 }
}

class HelloWorldCaller(timer:Duration, actor:ActorRef)
 extends Actor with ActorLogging {

 case class TimerTick(msg:String)

 override def preStart() {
 super.preStart()

 context.system.scheduler.schedule(

 timer,

 timer,

 self,

 new TimerTick("everybody"))
 }

 def receive = {
 case msg: String => log.info("received {}",msg)
 case tick: TimerTick => actor ! tick.msg
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

196

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The duration between the scheduled triggers
The ActorRef where the messages are to be sent
The message which is sent

This Actor is using the built-in scheduler to generate messages regularly. The
scheduler is used to send repeatedly the created TimerTick to us. And every time
we receives this TimerTick, we send a message to the actor reference given in the
constructor. This will be the HelloWorld Actor in our application. When it receives
a String as a message it is just logged. This String will be the reply of the
HelloWorld in our application.

To create our application we need to build the actor system at startup. We are
using the Akka kernel which contains a Bootable interface and we can implement
this interface to create our system. This implementation will be called when
starting.

Listing 7.27 BootHello

Extends the Bootable trait to be able to be called when starting the application

import akka.actor.{ Props, ActorSystem }
import akka.kernel.Bootable
import scala.concurrent.duration._

class BootHello extends Bootable {

 val system = ActorSystem("hellokernel")

 def startup = {
 val actor = system.actorOf(

 Props[HelloWorld])

 val config = system.settings.config
 val timer = config.getInt("helloWorld.timer")
 system.actorOf(Props(

 new HelloWorldCaller(

 timer millis,

 actor)))
 }

 def shutdown = {
 system.shutdown()
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

197

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Creating our ActorSystem
The method called when the system starts
Create our HelloWorld Actor
Get the timer duration from our configuration
Create the Caller Actor
Create a Duration from an Integer. This works because we have imported
akka.util.duration._
Passes the reference of the HelloWorld Actor to our caller
The method called when the system stops

So now we have built our system and need some resources to make our
application work properly. We use configuration to define the default value for our
timer.

Listing 7.28 reference.conf

Our default is 5000 milliseconds. Be sure that this reference.conf is placed
inside our jar file. Next we have to setup the logger event handler and this is done
in the application.conf

Listing 7.29 application.conf

At this point we have all our code and resources and need to create a
distribution. In this example we are using the akka-sbt-plugin to create the
complete distribution. The first step is to create a plugins.sbt file

helloWorld {
 timer=5000
 }

akka {
 event-handlers =
 ["akka.event.slf4j.Slf4jEventHandler"]

 # Options: ERROR,
 WARNING,
 INFO, DEBUG
 loglevel = "DEBUG"
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

198

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.30 project/plugins.sbt

Just for the readers who are not familiar with SBT. The first line is to add the
location of a repository where the plugin can be found. Then there is a white line;
this is necessary because it indicates that the previous line is ended. The next line
defines the plugin we want to use.

The last part we need before we are done is the SBT build file for our project.

resolvers += "Typesafe Repository"
 at "http://repo.akka.io/releases/"

 addSbtPlugin("com.typesafe.akka"
 % "akka-sbt-plugin" % "2.0.1")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

199

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://repo.akka.io/releases/
http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.31 project/HelloKernelBuild.scala

 import sbt._
 import Keys._
 import akka.sbt.AkkaKernelPlugin
 import akka.sbt.AkkaKernelPlugin.{ Dist,
 outputDirectory,
 distJvmOptions
 }
 object HelloKernelBuild extends Build {
 lazy val HelloKernel = Project(
 id = "hello-kernel-book",
 base = file("."),
 settings = defaultSettings

 ++ AkkaKernelPlugin.distSettings
 ++ Seq(

 libraryDependencies ++= Dependencies.helloKernel,
 distJvmOptions in Dist := "-Xms256M -Xmx1024M",

 outputDirectory in Dist := file("target/helloDist")
)
)

 lazy val buildSettings = Defaults.defaultSettings
 ++ Seq(
 organization := "com.manning",
 version := "0.1-SNAPSHOT",
 scalaVersion := "2.9.1",
 crossPaths := false,
 organizationName := "Mannings",
 organizationHomepage :=
 Some(url("http://www.mannings.com"))
)
 lazy val defaultSettings = buildSettings ++ Seq(
 resolvers += "Typesafe Repo" at
 "http://repo.typesafe.com/typesafe/releases/",
 // compile options
 scalacOptions ++= Seq("-encoding", "UTF-8",
 "-deprecation",
 "-unchecked"),
 javacOptions ++= Seq("-Xlint:unchecked",
 "-Xlint:deprecation")
)
 }
 // Dependencies
 object Dependencies {
 import Dependency._
 val helloKernel = Seq(akkaActor,
 akkaKernel,
 akkaSlf4j,
 slf4jApi,

 slf4jLog4j,
 Test.junit,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

200

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.mannings.com
http://repo.typesafe.com/typesafe/releases/
http://www.manning-sandbox.com/forum.jspa?forumID=835

Define where the created distribution should be put
Define the application dependencies
Use log4j as logging framework
Here we add the Akka plugin functionality to our project

 Test.scalatest,
 Test.akkaTestKit)
 }
 object Dependency {
 // Versions
 object V {
 val Scalatest = "1.6.1"
 val Slf4j = "1.6.4"
 val Akka = "2.0"
 }

 // Compile
 val commonsCodec = "commons-codec" %
 "commons-codec"% "1.4"
 val commonsIo = "commons-io"
 % "commons-io" % "2.0.1"
 val commonsNet = "commons-net"
 % "commons-net" % "3.1"
 val slf4jApi = "org.slf4j"
 % "slf4j-api" % V.Slf4j
 val slf4jLog4j = "org.slf4j"
 % "slf4j-log4j12"% V.Slf4j
 val akkaActor = "com.typesafe.akka"
 % "akka-actor" % V.Akka
 val akkaKernel = "com.typesafe.akka"
 % "akka-kernel" % V.Akka
 val akkaSlf4j = "com.typesafe.akka"
 % "akka-slf4j" % V.Akka
 val scalatest = "org.scalatest" %% "scalatest"
 % V.Scalatest
 object Test {
 val junit = "junit" % "junit" %
 "4.5" % "test"
 val scalatest = "org.scalatest" %% "scalatest" %
 V.Scalatest % "test"
 val akkaTestKit ="com.typesafe.akka"
 % "akka-testkit" % V.Akka % "test"
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

201

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

SIDEBAR Simple Build Tool: More Information
At some point, you will no doubt want more details on SBT and what all
it can do. You can read the documentation. The project is hosted on
GitHub (https://github.com/sbt/sbt). Included with the documentation is
a demo from ScalaDays that is quite extensive. Manning also has a
book that has been recently released, that goes into greatSBT in Action
detail, working through not only what you can do, but what makes SBT
a next generation build tool.

Now we have defined our project in SBT and are ready to create our
distribution. Listing 7.32 shows how we can start SBT and run the dist command.

Listing 7.32 Create distribution

Once sbt is done loading, type dist and press return

After this, SBT has created a distribution in the directory /target/helloDist. This
directory contains 4 subdirectories

bin
This contains the start script. One for windows and one for Unix
config
This directory contains the configuration files needed to run our application.
deploy
This directory is where our jar file placed
lib
This directory contains all the jar files our application depends upon.

Now we have a distribution and all that is left now, is to run our application.
The scripts need our boot class as an argument

sbt
[info] Loading project
definition from J:\boek\manningAkka\
listings\kernel\project
[info]
Set current project to hello-kernel-book (in build
 file:/J:/boek/manningAkka/listings/kernel/)

> dist

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

202

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

https://github.com/sbt/sbt
http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.33 run application

And when we look in the log file we see that every 5 seconds the helloWorld
actor is receiving messages, and the caller receives its messages. Of course, this
application has no real utility. In the next section, we will build an app that can
communicate with others through the web.

The remarkable part of what we'll do in this section is that it's really no more work
than the prior section, yet we will have an app that can expose a services interface,
opening up great possibilities. Play-mini is an extension created on top of Play! (a
web framework also created by typesafe). It's a match because we are interested in
making an application that has no user interface, but rather just a way to expose a
service via the web. There are a number of options for deploying Akka in a
webapp, we are showing play-mini because it is very simple and lightweight.

Listing 7.34 extend application

Just by extending Application, we bring a lot of functionality in here. Just as we
did in the kernel example, we start by creating our actor system. Listing 7.35
shows the creation of the ActorSystem.

Listing 7.35 create application system

start.bat ch04.BootHello

 ./start
 ch04.BootHello

7.3.2 Akka with a web application

object PlayMiniHello extends Application {
 ...
 }

object PlayMiniHello extends Application {
 lazy val system = ActorSystem("webhello")
 lazy val actor = system.actorOf(Props[HelloWorld])
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

203

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

So far, our web app looks the same as the kernel one. First thing we're going to
need in the web app that the kernel one did not have is to create routes; these are
the URLs our application supports. Our example supports two URLs, both are GET
actions. The first is /test. This is an example of a response we can directly create.
Ok is one of the results we can return; other examples are NotFound, BadRequest,
ServiceUnavailable, etc. Listing 7.36 shows the route creation.

Listing 7.36 create simple route

This is all we have to do to map our REST path to an action
Single line sends back our HTTP response code and a message (we include the
time)

In newer, service-oriented architectures, whole applications can be built from a
few such service mappings. Remember, this is all we've done so far beyond our
simple kernel example; the required plumbing and message handling came in with
Akka's Application class (and the ActorSystem). The second route is our hello
request. To service this request we need a parameter name from the request and
when it isn't supplied, we will use the name defined in our configuration. Listing
7.37 shows how we get a parameter while mapping a REST path.

Listing 7.37 define form

To get the name parameter from the request, we use the play Form class. We
define the form with our name parameter, which should be a string and the length
of the string should be between 1 and 10. To get the value of the name parameter
we have to bind the form with the request. When this fails we use the configuration
parameter helloWorld.name.

object PlayMiniHello extends Application {
 def route = {

 case GET(Path("/test")) => Action {

 Ok("TEST @ %s\n".format(System.currentTimeMillis))
 }
 }
}

val writeForm = Form("name" -> text(1,10))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

204

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.38 get request parameter

define the request as implicit to allow binding later
Bind our form to the implicit request and get the result
Use our configuration to get the default name

Now we have our name, which we can send to our actor. But we have to wait
for our result before we can create a response. And we don't want to block our
thread. Instead of returning our response directly, we create an AsyncResult. This
AsyncResult needs a promise. A promise is closely linked to a Future, but the
Future is used at the consumer site. With the Promise, the result is waited for at the
producer site; it supplies the result when it is done. More details about Futures and
Promises and covered in a later chapter.

Listing 7.39 AsyncResult

Send our request using the ask method
Create a Promise using the future

case GET(Path("/hello")) => Action {

 implicit request =>
 val name = try {

 writeForm.bindFromRequest.get
 } catch {
 case ex:Exception => {
 log.warning("no name specified")

 system.settings.config.getString("helloWorld.name")
 }
 }
 ...
}

AsyncResult {

 val resultFuture = actor ? name

 val promise = resultFuture.asPromise

 promise.map {
 case res:String => {
 Ok(res)
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

205

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Create a response when the result of the HelloWorld Actor is received.

To create a response using the response of our HelloWorld actor, we need to
use the ask method. We have seen that the ask method returns a Future. We are
going to use this Future to create a Promise based on the received Future. The last
step is to fill the Promise with our result. This is executed when the future has a
result. When the response of the HelloWorld actor is received, the code within map
is executed. This way we don't have to wait for the result in our thread. All the
other code is executed directly.

This works fine when we get a response in time, but what happens when the
response isn't received in time and we get an AskTimeoutException. Then the map
part isn't called and our Promise will not contain a result. To solve this problem,
we extend the Future to also create a String when it fails. To do this we use the
recover method of the Future.

Listing 7.40 recover Future

Translate the AskTimeoutException into the string "Timeout"

With the recover we create a new Future which will return the message of the
initial Future when successful and otherwise the following code will be executed.
So when we get a response from the HelloWorld Actor, the new Future will return
the same message. But when the initial Future fails because there is a
AskTimeoutException, the exception is replaced by the String "Timeout". This
way the future will always return a String even when it fails. When we use the new
Future to create a Promise, the map code block will be called even when there is an
exception during the ask.

When we put all the code parts together we get the following class. We have
seen all the parts in the prior sections, so there is nothing new here. What is notable

val
 resultFuture = actor ? name recover {
 case ex:AskTimeoutException
 => "Timeout"

 case ex:Exception => {
 log.error("recover from "+ex.getMessage)
 "Exception:" + ex.getMessage
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

206

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

is how little code is required overall to not just spit back a message, but to handle:

Defaulting through a property (from a resource file)

Retrieving a parameter

Gracefully handling timeout

Doing it all concurrently

Use this comprehensive (albeit simple) example (in listing 7.41) as a map to
what has gone before in this chapter.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

207

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.41 PayMiniHelloHello

object PlayMiniHello extends Application {

 lazy val system = ActorSystem("webhello")
 lazy val actor = system.actorOf(Props[HelloWorld])
 implicit val timeout = Timeout(1000 milliseconds)
 val log = Logging(system,PlayMiniHello.getClass)

 def route = {

 case GET(Path("/test")) => Action {
 Ok("TEST @ %sn".format(System.currentTimeMillis))
 }

 case GET(Path("/hello")) => Action {

 implicit request =>

 val name = try {

 writeForm.bindFromRequest.get
 } catch {
 case ex:Exception => {
 log.warning("no name specified")
 system.settings.config.getString("helloWorld.name")
 }
 }

 AsyncResult {

 val resultFuture = actor ? name recover {

 case ex:AskTimeoutException => "Timeout"

 case ex:Exception => {
 log.error("recover from "+ex.getMessage)
 "Exception:" + ex.getMessage
 }
 }

 val promise = resultFuture.asPromise

 promise.map {
 case res:String => {
 log.info("result "+res)
 Ok(res)
 }
 case ex:Exception => {
 log.error("Exception "+ex.getMessage)
 Ok(ex.getMessage)
 }
 case _ => {
 Ok("Unexpected message")
 }
 }
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

208

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Implement the Application trait
Create our system and actors
Create a route and create a direct result
Create a request using our helloworld actor
In this action, we need the request and make it implicit for getting the parameter
name
Get the parameter name, for more details look in the play documentation. Using the
request as implicit
Because we do not want to block, we return an AsyncResult
The request to our HelloWorld Actor. Because we could receive a timeout, we
create a recover that returns a string when the ask fails
Return the string Timeout when the ask fails with a timeout
Create a string when another exception has happened
Create a promise from the ask Future
This is the actual creation of our result. This is executed when the response of the
actor is received
Definition of our name parameter. It should be a text with a minimal size of 1 to a
maximum of 10 characters, look in the Play! documentation for more details

There are still a few minor things we need to do outside the app. The next one
is to define which class should be used to start the application. In our case
"PlayMiniHello." To do this, we have to create the class Global.

Listing 7.42 Global

This class extends indirectly the play.api.GlobalSettings trait. This allows us to
use the onStart and onStop methods which create and stop the Actor system. We
didn't use these methods in the example; preferring to do it in our Application
class, which will be the only place we address the ActorSystem.

To be able to run our application, we need configuration files, similar to what
we saw in the kernel example, starting with the reference.conf

 }

 val writeForm = Form("name" -> text(1,10))
}

object Global extends com.typesafe.play.mini.Setup(
 ch04.PlayMiniHello)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

209

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.43 reference.conf

And the application.conf (which is where the property we're using to provide a
default name is coming from).

Listing 7.44 application.conf

Now that we have all our code and resource files, we can make the SBT build
script

helloWorld {
 name=world
}

helloWorld {
 name="world!!!"
}

akka {
 event-handlers = ["akka.event.slf4j.Slf4jEventHandler"]

 # Options: ERROR, WARNING, INFO, DEBUG
 loglevel = "DEBUG"
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

210

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.45 Build.scala

Line added to support testing within SBT

SBT supports testing of the webbapplication within SBT. By adding the line

import sbt._
import Keys._
import PlayProject._

object Build extends Build {
 lazy val root = Project(id = "playminiHello",
 base = file("."), settings = Project.defaultSettings).settings(
 resolvers += "Typesafe Repo" at
 "http://repo.typesafe.com/typesafe/releases/",
 resolvers += "Typesafe Snapshot Repo" at
 "http://repo.typesafe.com/typesafe/snapshots/",
 libraryDependencies ++= Dependencies.hello,

 mainClass in (Compile, run) :=
 Some("play.core.server.NettyServer"))
}

object Dependencies {
 import Dependency._
 val hello = Seq(akkaActor,
 akkaSlf4j,
 // slf4jLog4j,
 playmini
)
}

object Dependency {

 // Versions
 object V {
 val Slf4j = "1.6.4"
 val Akka = "2.0"
 }

 // Compile
 val slf4jLog4j = "org.slf4j" % "slf4j-log4j12"% V.Slf4j
 val akkaActor = "com.typesafe.akka" % "akka-actor" % V.Akka
 val playmini = "com.typesafe" %% "play-mini" % "2.0-RC3"
 val akkaSlf4j = "com.typesafe.akka" % "akka-slf4j" % V.Akka

}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

211

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://repo.typesafe.com/typesafe/releases/
http://repo.typesafe.com/typesafe/snapshots/
http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 7.46 SBT run

It is possible to start the application with the command run within SBT.

Listing 7.47 SBT run

At this moment the application is running and listening on port 9000. To test
this you can do a request using a browser or using curl or wget.

mainClass in (Compile, run) :=
 Some("play.core.server.NettyServer"))

sbt > run

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

212

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Like so much in development, Deployment looks like it's going to be a piece of
cake as you approach. Yet in practice, it often turns into a vortex of each
component configuring itself from its own resources, with no rhyme or reason
behind the overall system approach. As is the case in all things design-wise, Akka's
approach is to provide state of the art tools, but with the emphasis on simple
conventions that are easy to implement. These made making our first app ready to
run rather easy. But more importantly, we have seen that we can carry this
simplicity forward into much more complex realms.

File conventions for simple overriding of configuration

Intelligent defaulting means apps can supply most of what's needed

Yet granular control over injecting config

State of the art logging through an adapter and single dependency point

Lightweight application bundling, including for the web

Using a build tool that also bundles and runs your app

The age of the release engineer as the hardest working member of the team may be
ending. As we go forward with more complex examples in the book, you will see
that we will not see the deployment layer blow up on us. This is a huge part of the
Akka story: it is delivering not only a power-packed runtime with messaging and
concurrency built in, but the means to get solutions running in it more rapidly than
in the less powerful application environments most of us are accustomed to.

7.4 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

213

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

8
In this chapter

Pipe and Filter Pattern
Scatter-Gather Pattern
Routing
Recipient list
Aggregator
Become/unbecome

One of the immediate implications of Actor based programming is how do we
model code that requires collaborators to work together if each unit of work is done
in parallel? Collaboration implies some notion of process, which, though there can
be parallel processes, there will also be cases where it's essential that certain steps
happen after a required prior step has been completed. By implementing a few of
the classic Enterprise Integration Patterns, we'll take the next step in showing how
Akka allows us to use these design approaches while still making use of its
inherent concurrency.

integration tools and platforms
messaging systems
WSO2, and SOA and Web-service based solutions

We are going to focus primarily on the most relevant Enterprise Integration
patterns to show different ways of connecting actors to solve problems. The
architectural Enterprise Integration Patterns will get the most attention in this
chapter, as we are considering system structure.

We start with the simple Pipes and Filters pattern. This is the default pattern for

System Structure

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

214

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

most message passing systems and is very straightforward, but, of course, the
classical version is sequential. (We will adapt it to work in our concurrent,
message-based architecture.) Next will be the Scatter-Gather Pattern, which does
provide a means of parallelizing tasks. Actor implementations of these patterns are
not only remarkably compact and efficient, but they are free of a lot of the
implementation details that quickly seep into patterns that have to deal with
messaging (as most of these do).

The concept of piping refers to the ability for one process or thread to pump its
results to another processor for additional processing. Most people know it from
some exposure to Unix, where it originated. The set of piped components is often
referred to as a 'pipeline,' and most people's experience of it is of each step
occurring in sequence with no parallelism. Yet, we will quickly see that there are
often good reasons to want to see non-dependent aspects of a process occur in
parallel. That's what we will show here. First, a description of this pattern's
applicability, and its form, then a look at how we can implement it using Akka.

In many systems a single event will trigger a sequence of tasks. For example our
camera in chapter 3. It receives the photo and before the event is sent to central
processing, a number of checks are done. When no license plate is found in the
photo, the system is unable to process the message any further and therefore, it will
be discarded. In this example we also discard the message when the speed is below
the maximum speed. Which means that only messages that contain the license
plate of a speeding vehicle end up getting to the central processor. You can
probably already see how we will apply the Pipes and Filters Pattern here: the
constraints are filters, and the interconnects are the pipes in this case.

Figure 8.1 Example of Pipes and Filters

Each Filter consists of three parts, the inbound pipe where the message is

8.1 Pipes and Filters

8.1.1 Enterprise integration pattern Pipes and Filters

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

215

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

received, the processor of the message, and finally the outbound pipe where the
result of the processing is published.

Figure 8.2 Three parts of a Filter

In Figure 8.2 these parts are shown. The two pipes are drawn partly outside the
Filter because the outbound pipe of the check license filter is also the inbound pipe
of the check speed filter. An important restriction is that each filter must accept and
send the same messages, because the outbound pipe of a filter can be the inbound
pipe of any other filter in the pattern. This means that all the filters need to have
the same interface. This includes the inbound and the outbound pipe. This way it is
very easy to add new processes, change the order of processes or remove them.
Because the filters have the same interface and are independent, nothing has to be
changed, other than potentially adding additional pipes.

The filters are the processing unit of the messages system, so when we apply the
pattern to Akka we use actors to implement our filters. Thanks to the fact that the
messaging is supplied behind the scenes, we can just connect a number of Actors
and the pipes are already there. So it would seem to be quite simple to implement
this pattern with Akka. Are we done here? Not quite. There is a small requirement
which is crucial for implementing the Pipes and Filter pattern and that is that the
interface is the same for all the filters and that these steps are independent. This
means that all the messages received by the different Actors should be the same,
because the message is part of the interface of the filter as shown in Figure 8.3. If
we were to use different messages, the interface of the next actor would differ and
our uniformity requirement would be violated, preventing us from being able to
indiscriminately apply filters.

8.1.2 Pipes and filters in Akka

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

216

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 8.3 Messages send by different actors

Given the requirement that the input and output to the pipe need be the same,
both actors must accept and send the same messages.

Let us create a small example with a Photo message and two filters the License
and speed filter.

Listing 8.1 A Pipe with Two Filters Example

There is nothing special about these Actor filters. We used actors with one way
messages in section 2.1.2 and other examples. But because the two actors process
and send the same message type, we can construct a pipeline from them, which
allows for either one to feed the other its results, meaning the order in which we
apply the filters does not matter. In the next example, we'll show how this gives us
flexibility that comes in handy when we find that the order will have a marked
influence on the execution time. Let's see how this works.

case class Photo(license: String, speed: Int)

class SpeedFilter(minSpeed: Int, pipe: ActorRef) extends Actor {
 def receive = {
 case msg: Photo =>
 if (msg.speed > minSpeed)
 pipe ! msg
 }
}

class LicenseFilter(pipe: ActorRef) extends Actor {
 def receive = {
 case msg: Photo =>
 if (!msg.license.isEmpty)
 pipe ! msg
 }
}

The message
which will be
filtered

Filter all Photos
which have a
speed lower than
the minimal speed

Filter all Photos
which have an
empty license

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

217

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 8.2 Pipe and filter test

The license filter uses a lot of resources. It has to locate the letters and numbers
on the plate, which is CPU-intensive. When we put the camera on a busy road, we
find that the recognize filter can't keep up with pace of new photos arriving. Our
investigations reveal that 90% of the messages are approved by the License Check
and 50% of the messages are approved by the speed filter.

Figure 8.4 Number of processed messages
for each filter for initial configuration

In this example shown in Figure 8.4 the Check license has to process 20
message each second. To improve performance, it would be better to reorder the
filters. Since most of the messages are filtered by the speed filter, the load on the

val endProbe = TestProbe()
val speedFilterRef = system.actorOf(
 Props(new SpeedFilter(50, endProbe.ref)))
val licenseFilterRef = system.actorOf(
 Props(new LicenseFilter(speedFilterRef)))
val msg = new Photo("123xyz", 60)
licenseFilterRef ! msg
endProbe.expectMsg(msg)
licenseFilterRef ! new Photo("", 60)
endProbe.expectNoMsg(1 second)
licenseFilterRef ! new Photo("123xyz", 49)
endProbe.expectNoMsg(1 second)

Construct the
pipeline

Test a message
which should be
passed through
Test a message
without a license
Test a message
with a low speed

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

218

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

license filter will be decreased significantly.

Figure 8.5 Number of processed messages
for each filter for altered configuration

As we can see in figure 8.5, when we switch the order of filters, check license is
asked to evaluate 10 licenses per second; reordering halved the load of the check
license filter. And because the interfaces are the same and the processes are
independent we can easy change the order of the actors without changing the
functionality or the code. Before the pipes and filters pattern, we had to change
both components to get this to work. Using this pattern, the only change is when
building the chain of actors at startup time, which can be easily made configurable.

Listing 8.3 Changed order of filters

val endProbe = TestProbe()
val licenseFilterRef = system.actorOf(
 Props(new LicenseFilter(endProbe.ref)))
val speedFilterRef = system.actorOf(
 Props(new SpeedFilter(50, licenseFilterRef)))
val msg = new Photo("123xyz", 60)
speedFilterRef ! msg
endProbe.expectMsg(msg)
speedFilterRef ! new Photo("", 60)
endProbe.expectNoMsg(1 second)
speedFilterRef ! new Photo("123xyz", 49)
endProbe.expectNoMsg(1 second)

Construct the
pipeline in another
order

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

219

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

We see that it doesn't matter which order we use, the pipeline gives us the same
functionality; this flexibility is the strength of this pattern. In our example we used
actual filters, but this pattern can be extended; the processing pipeline is not
limited to filters. As long as the process accepts and produces the same types of
messages, and is independent of the other processes, this pattern applies. In the
next section, we will see a pattern that enables a divide and conquer approach,
which of course, requires concurrency, and Akka again makes it easy. We scatter
units of work amongst a number of processing Actors and then gather their results
into a single set, allowing the consumer of the work product to just make a request
and get a single response.

In the previous section, we created a pipeline of tasks which where executed
sequentially. The ability to execute tasks in parallel is often preferable. We'll look
at the Scatter-Gather Pattern next and will see how we can accomplish this. Akka's
inherent ability to dispatch work to actors asynchronously provides most of what
we need to make this pattern work. The processing tasks (filters in the previous
example) are the gather parts; the Recipient List is the scatter component. We'll use
the Aggregator for the gather part (provided by Akka).

The pattern can be applied in two different scenarios. The first case is when the
tasks are functionally the same, but only one is passed through to the gather
component as the chosen result. The second scenario is when work is divided for
parallel processing and each processor submits its results which are then combined
into a result set by the aggregator. We will see the benefits of the pattern clearly in
both of our Akka implementations in the following section.

Let's start with the following problem. A client buys a product, let's say a book at a
web shop, but the shop doesn't have the requested book in stock, so it has to buy
the book from a supplier. But the shop is doing business with three different
suppliers and wants to pay the lowest price. Our system needs to check if the
product is available, and at what price. This has to be done for each supplier, and
only the supplier with the lowest price will be used. In figure 8.6 we show how the
Scatter-Gather Pattern can help here.

8.2 Scatter-Gather Pattern

8.2.1 Applicability

COMPETING TASKS

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

220

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 8.6 Scatter-Gather Pattern with competing tasks

The message of the client is distributed over three processes and each process
checks the availability and price of the product. And the gather process will collect
all the results and only pass the messages with the lowest price (in the example
$20). The processing tasks are all focused on one thing: getting the price of the
product, but they may be doing it in different ways, because there are multiple
suppliers. In the pattern parlance, this is the competing tasks aspect, as only the
best result is going to be used. For our example, it's the lowest price, but the
selection criteria could be different in other cases. Selection in the Gather
component is not always based on the content of the message. It is also possible
that you only need one solution, in which case, the competition is merely
determining which is the quickest response. For example, the time of sorting a list
depends greatly on the algorithm used and the initial unsorted list. When
performance is critical, we sort the list in parallel using different sorting
algorithms. If we did such a thing with Akka, we would have one Actor doing a
bubble sort, one a quicksort, maybe one doing a heap sort. All tasks will result in
the same sorted list, but depending on the unsorted list, one of them will be the
fastest. In this case the gather will select the first received message and tell the
other actors to stop. This is also an example of using the Scatter-Gather Pattern for
competing tasks.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

221

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Another case where the Scatter-Gather Pattern can be used is when the tasks are
performing a sub task. Let us go back to our Camera example. While processing a
Photo, different information has to be retrieved from the photo and added to the
Photo messages. For example the time the photo was created and the speed of the
vehicle. Both actions are independent of each other and can be performed in
parallel. When both tasks are ready, the results must be joined together into a
single message containing the time and the speed. Figure 8.7 shows the use of
Scatter-Gather for this problem. This pattern starts with scattering a message to
multiple tasks: GetTime and GetSpeed. And the results of both tasks should be
combined into a single message which can be used by other tasks.

Figure 8.7 Scatter-Gather Pattern for task parallelization

Let's see how we can implement the Scatter-Gather Pattern in the second scenario
with Akka actors. We are going to use the Photo example. Each component in this
pattern is implemented by one actor. In this example we use one type of message,
which is used for all tasks. And each task can add the data to the same type
message when processing has completed. The requirement that all tasks should be
independent can't always be met. This only means that the order of both tasks can't
be switched. But all the other benefits of adding, removing or moving the tasks
apply.

We start by defining the message that will be used. This message is received
and sent by all components in this example.

PARALLEL COOPERATIVE PROCESSING

8.2.2 Parallel tasks with Akka

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

222

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

For our example message, we mock the traffic cameras and image recognition
tools by just providing the image. Note, the message has an ID, which can be used
by the Aggregator to associate the messages with their respective flows. The other
attributes are the creation time and speed; they start empty and are provided by the
GetSpeed and GetTime tasks. The next step is to implement the two processing
tasks GetTime and GetSpeed.

Figure 8.8 Listing of the two processing tasks GetTime and GetSpeed

As is shown in Figure 8.8, the two actors have the same structure, the difference
being which attribute is extracted from the image. So these actors are doing the
actual work, but we need an actor that implements the scatter functionality that will
dispatch the images for processing. In the next section, we will use the recipient
list to scatter the tasks, then the results are combined with the Aggregator Pattern.

case class PhotoMessage(id: String,
 photo: String,
 creationTime: Option[Date] = None,
 speed: Option[Int] = None)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

223

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

When a PhotoMessage enters the Scatter-Gather Pattern, the scatter component has
to send the message to the processors (the GetTime and GetSpeed actors from the
prior section). We use the simplest implementation of the scatter component and
that is the Recipient list. (The scattering of messages can be implemented in a
number of ways; any approach that creates multiple messages from one message
and distributes it, will do.)

The Recipient list is a simple pattern because it is one component; its function
is to send the received message to multiple other components. Figure 8.9 shows
that the received messages are sent to the GetTime and GetSpeed Tasks.

Figure 8.9 Recipient list pattern

Given that we have to perform the same two extractions on every message, the
RecipientList is static and the message is always sent to the GetTime and GetSpeed
tasks. Other implementations might call for a dynamic recipient list where the
receivers are determined based on the message content, or the state of the list.

Figure 8.10 Listing of the Recipient list

In Figure 8.10 the simplest implementation of a recipient list is shown; when a
message is received, it is sent to members. Let's put our RecipientList to work. We
start by creating it with Akka testProbes (we first saw these in Chapter 3).

8.2.3 Implement the scatter component using the Recipient list

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

224

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 8.4 Recipient list test

And when we send a message to the RecipientList actor, the message is
received by all probes.

This pattern isn't mind-blowing, but used in the Scatter-Gather Pattern, it is
quite useful.

The recipient list is scattering one message into two message flows to the
GetSpeed and GetLicense. Both flows are doing a part of the total processing. So
when the time and speed have both been retrieved, the messages need to be joined
into a single result. This is done in the gather component. Figure 8.11 shows the
Aggregator pattern which is used as the gather component. Just as the
RecipientList is used as a scatter component.

Figure 8.11 Example of Aggregate pattern as gather
component

The Aggregator pattern is used to combine multiple messages into one. This
can be a selection process when the processing tasks are competing with each
other, or merely combining several messages into one as we are doing here. One of
the characteristics of the Aggregator is that the messages have to be stored
somehow and when all messages have been received, the Aggregator can process

val endProbe1 = TestProbe()
val endProbe2 = TestProbe()
val endProbe3 = TestProbe()
val list = Seq(endProbe1.ref, endProbe2.ref, endProbe3.ref)
val actorRef = system.actorOf(
 Props(new RecipientList(list)))
val msg = "message"
actorRef ! msg
endProbe1.expectMsg(msg)
endProbe2.expectMsg(msg)
endProbe3.expectMsg(msg)

Create the recipient
list

Send the message
All the recipients
have to receive the
message

8.2.4 Implementing the gather component with the Aggregator pattern

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

225

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

them. To keep it simple we are going to implement an Aggregator that combines
two PhotoMessages into one.

Listing 8.5

The buffer to store the messages which can't be processed yet
This is the second (of two) messages so we can start combining them
Remove the processed message from the list
Received the first message, so store it for processing later

The first thing when receiving a message, is to check if it is the first message or
the second. When it is the second we can process the messages. Processing in this
Aggregator is to combine the messages into one and send the result to the next
process. When it is the first message the message is stored in the messages buffer.

class Aggregator(timeout:Duration, pipe:ActorRef) extends Actor {

 val messages = new ListBuffer[PhotoMessage]
 def receive = {
 case rcvMsg: PhotoMessage => {
 messages.find(_.id == rcvMsg.id) match {

 case Some(alreadyRcvMsg) => {
 val newCombinedMsg = new PhotoMessage(
 rcvMsg.id,
 rcvMsg.photo,
 rcvMsg.creationTime.orElse(alreadyRcvMsg.creationTime),
 rcvMsg.speed.orElse(alreadyRcvMsg.speed))
 pipe ! newCombinedMsg
 //cleanup message

 messages -= alreadyRcvMsg
 }

 case None => messages += rcvMsg
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

226

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 8.6 Aggregator test

The Aggregator works as expected. Two messages are sent to it, whenever they
are ready, and one combined message is then created and sent on. But because we
have state in our actor we need to assure that the state is always consistent. So what
happens when one task fails? When this happens the first message is stored forever
in the buffer and no one would ever know what happened to this message. As
occurrences pile up, our buffer size increases and eventually it might consume too
much memory, which can cause a catastrophic fault. There are many way to solve
this. In this example we are going to use a timeout. We expect that both processing
tasks need about the same amount of time to execute, therefore both messages
should be received about the same time. This time can differ because of the
availability of resources needed to process the message. When the second message
isn't received within the stipulated timeout, it is presumed lost. The next decision
we have to make is how the Aggregator should react to the loss of a message. In
our example, the loss of a message is not catastrophic so we want to continue with
a message which is not complete. So, in our implementation, the Aggregator will
always send a message even when one of them was not received.

To implement the timeout we will use the scheduler. Upon receipt of the first
message, we schedule a TimeoutMessage (providing self as the recipient). The
message is only still in the buffer when the second message was not received. This

val endProbe = TestProbe()
val actorRef = system.actorOf(
 Props(new Aggregator(1 second, endProbe.ref)))
val photoStr = ImageProcessing.createPhotoString(new Date(), 60)
val msg1 = PhotoMessage("id1",
 photoStr,
 Some(new Date()),
 None)
actorRef ! msg1
val msg2 = PhotoMessage("id1",
 photoStr,
 None,
 Some(60))
actorRef ! msg2
val combinedMsg = PhotoMessage("id1",
 photoStr,
 msg1.creationTime,
 msg2.speed)
endProbe.expectMsg(combinedMsg)

Send the first
message

Send the second

Expect the
combined message

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

227

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

can be used to detect what action should be taken.

Listing 8.7 Implementing the Timeout

Schedule the timeout
Timeout has expired
Send the first message when the second isn't received
Both messages are already processed, so do nothing

We have implemented the timeout, now let's see if it is received when the
Aggregator fails to receive two message in the allowable time.

case class TimeoutMessage(msg:PhotoMessage)

def receive = {
 case rcvMsg: PhotoMessage => {
 messages.find(_.id == rcvMsg.id) match {
 case Some(alreadyRcvMsg) => {
 val newCombinedMsg = new PhotoMessage(
 rcvMsg.id,
 rcvMsg.photo,
 rcvMsg.creationTime.orElse(alreadyRcvMsg.creationTime),
 rcvMsg.speed.orElse(alreadyRcvMsg.speed))
 pipe ! newCombinedMsg
 //cleanup message
 messages -= alreadyRcvMsg
 }
 case None => {
 messages += rcvMsg

 context.system.scheduler.scheduleOnce(
 timeout,
 self,
 new TimeoutMessage(rcvMsg))
 }
 }
 }

 case TimeoutMessage(rcvMsg) => {
 messages.find(_.id == rcvMsg.id) match {
 case Some(alreadyRcvMsg) => {

 pipe ! alreadyRcvMsg
 messages -= alreadyRcvMsg
 }

 case None => //message is already processed
 }
 }
}

val endProbe = TestProbe()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

228

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

As you can see, when we send only one message the timeout is triggered, we
detect a missing message and send the first message as the combined message.

But this isn't the only problem that can occur. In chapter 3 we have seen that we
have to be careful when using state. When the Aggregator fails somehow we are
losing all the messages which are already received, because the Aggregator is
restarted. So how can we solve this problem? Before the actor is restarted the
preRestart method is called. This method can be used to preserve our state. For this
Aggregator we can use the simplest solution: have it resend the messages to the
itself before restarting. Because we don't depend on the order of the received
messages, this should be fine even when failures occur. By resending the messages
from our buffer, the messages are stored again when the new instance of our actor
is started. The complete Aggregator becomes:

val actorRef = system.actorOf(
 Props(new Aggregator(1 second, endProbe.ref)))
val photoStr = ImageProcessing.createPhotoString(
 new Date(), 60)
val msg1 = PhotoMessage("id1",
 photoStr,
 Some(new Date()),
 None)
actorRef ! msg1
endProbe.expectMsg(msg1)

Create the
message

Send only one
messagewait for the timeout
and receive the
message

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

229

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 8.8 Aggregator

We added the ability to throw an exception to trigger a restart for testing
purposes. But when we receive the same message type twice, how will our timeout

class Aggregator(timeout: FiniteDuration, pipe: ActorRef)
 extends Actor {

 val messages = new ListBuffer[PhotoMessage]
 implicit val ec = context.system.dispatcher
 override def preRestart(reason: Throwable, message: Option[Any]) {
 super.preRestart(reason, message)
 messages.foreach(self ! _)
 messages.clear()
 }

 def receive = {
 case rcvMsg: PhotoMessage => {
 messages.find(_.id == rcvMsg.id) match {
 case Some(alreadyRcvMsg) => {
 val newCombinedMsg = new PhotoMessage(
 rcvMsg.id,
 rcvMsg.photo,
 rcvMsg.creationTime.orElse(alreadyRcvMsg.creationTime),
 rcvMsg.speed.orElse(alreadyRcvMsg.speed))
 pipe ! newCombinedMsg
 //cleanup message
 messages -= alreadyRcvMsg
 }
 case None => {
 messages += rcvMsg
 context.system.scheduler.scheduleOnce(
 timeout,
 self,
 new TimeoutMessage(rcvMsg))
 }
 }
 }
 case TimeoutMessage(rcvMsg) => {
 messages.find(_.id == rcvMsg.id) match {
 case Some(alreadyRcvMsg) => {
 pipe ! alreadyRcvMsg
 messages -= alreadyRcvMsg
 }
 case None => //message is already processed
 }
 }
 case ex: Exception => throw ex
 }
}

Send all the
received messages
to our own mailbox

Added for testing
purposes

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

230

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

mechanism work? Because we do nothing when the messages are processed, it isn't
a problem when we get the Timeout twice. And because it is a timeout, we don't
want the timer to be reset. And in this example only the first timeout will take
action when this is necessary. So this simple mechanism will work.

So does our change solve the problem? Let's test it by sending the first message
and make the Aggregator restart before sending the second message. Is the
Aggregator still able to combine the two messages despite the restart?

Listing 8.9 Aggregator missing a message

Send the first message
Restart the Aggregator
Send the Second message

The test passes, showing that the Aggregator was able to combine the message
even after a restart. In messaging, durability refers to the ability to maintain
messages in the midst of service disruptions. We implemented it simply by having
the Actor resend any messages it might be holding to itself, and we verified that it
works with a unit test (so if some aspect of the durable implementation is changed,
our test will let us know before we suffer a runtime failure).

val endProbe = TestProbe()
val actorRef = system.actorOf(
 Props(new Aggregator(1 second, endProbe.ref)))
val photoStr = ImageProcessing.createPhotoString(new Date(), 60)
val msg1 = PhotoMessage("id1",
 photoStr,
 Some(new Date()),
 None)

actorRef ! msg1

actorRef ! new IllegalStateException("restart")
val msg2 = PhotoMessage("id1",
 photoStr,
 None,
 Some(60))

actorRef ! msg2
val combinedMsg = PhotoMessage("id1",
 photoStr,
 msg1.creationTime,
 msg2.speed)
endProbe.expectMsg(combinedMsg)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

231

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

With each component tested and ready, we can now make a complete
implementation of the pattern. Note, by developing each piece in isolation with
unit tests, we enter this final assembly phase confident that each collaborator will
do its job successfully.

Listing 8.10 Scatter-Gather implementation

Create the Aggregator
Create the GetSpeed actor and pipe it to the Aggregator
Create the GetTime actor and pipe it to the Aggregator
Create the recipient list of the GetTime and GetSpeed actors
Send the message to the recipient list
Receive the combined message

In this example we send one message to the first actor the recipient list. This
actor creates two message flows which can be processed in parallel. Both results
are sent to the Aggregator and when both messages are received, a single message
is sent to the next step: our probe. This is how the scatter gather pattern works. In
our example we had two tasks, but this pattern doesn't restrict the number of tasks.

The Scatter-Gather Pattern can also be combined with the Pipe and Filter
Pattern. This can be done in two ways: the first is to have the complete
Scatter-Gather Pattern as part of a pipe line. This means that the complete

8.2.5 Combining the components into the Scatter-Gather Pattern

val endProbe = TestProbe()
val aggregateRef = system.actorOf(

 Props(new Aggregator(1 second, endProbe.ref)))
val speedRef = system.actorOf(

 Props(new GetSpeed(aggregateRef)))
val timeRef = system.actorOf(

 Props(new GetTime(aggregateRef)))
val actorRef = system.actorOf(

 Props(new RecipientList(Seq(speedRef, timeRef))))
val photoDate = new Date()
val msg = PhotoMessage("id1",
 ImageProcessing.createPhotoString(photoDate, 60))

actorRef ! msg
val combinedMsg = PhotoMessage(msg.id,
 msg.photo,
 Some(photoDate),
 Some(60))

endProbe.expectMsg(combinedMsg)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

232

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Scatter-Gather Pattern is implementing one filter. The scatter component accepts
the same messages as the other filter components in the filter pipeline. And the
gather component sends only those interface messages.

Figure 8.12 Use scatter gather pattern as filter

In Figure 8.12 we see the filter pipeline and one of the filters is implemented
using the Scatter-Gather Pattern. This results in a flexible solution where we can
change the order of filters and add or remove filters without disrupting the rest of
the processing logic.

Another possibility is that the pipeline is part of the scattered flow. This means
that the messages are sent through the pipeline before they are gathered.

Figure 8.13 Use of Pipe and Filter Pattern in a Scatter-Gather Pattern

In Figure 8.13 you can see that the Scatter-Gather Pattern results in the message
being scattered into two streams. One of the streams is a pipeline while the other is
just a single processing task (per the prior example). Combining the patterns can be
handy as systems grow larger; we are keeping the parts flexible and reusable. Now
we'll turn our attention to applications that

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

233

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

In this chapter, we tackled the design of flexible collaborative solutions in Akka
using some common enterprise patterns. By combining the patterns, we are able to
create complex systems. Some of takeaways:

Scaling processing requires that we spread work amongst concurrent collaborators
Patterns give us a starting point on standard ways of doing that
The Actor model allowed us to focus on the design of our code, not messaging and
scheduling implementation details
Patterns are building blocks that can be combined to build bigger system parts

Through all of these implementations, Akka has made it easy to adapt to more
complex requirements without having to change the fundamental approach to
constructing our components. We are still just sending messages to Actors, and
sometimes those messages are part of a sequential process and at others, they are
enabling concurrency. In the next chapter we will focus on the different functions
of the tasks itself. After completing these chapters, you will be able ready to start
implementing a complete system.

8.3 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

234

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

10
In this chapter

Point to point
Publish subscribe
EventBus
Dead letter
Guaranteed delivery
Reliable-proxy

In this chapter we are taken a closer look at the message channels which can be
used to send messages from one Actor to another. We start with the two types of
channels. The point-to-point channel and the Publish-subscribe. The point-to-point
is the channel, which we used in all our examples until now. But to explain the
differences between the two channels we included this type here too. Sometimes
we need a more flexible method to send messages to receivers. In the
publish-subscribe section we describe a method to send messages to multiple
receivers and without knowing which receivers need the message. The receivers
are kept by the channel and can change during the operation of the application.
Other names which are often used for these kind of channels are EventQueue or
EventBus. Akka has an EventStream which implements a publish-subscribe
channel. But when this implementation isn't sufficient, then Akka has a collection
of traits which helps to implement an custom publish subscribe channel.

Next we describe two special channels. The first is the Dead Letter channel,
which contain message that couldn't be delivered. This is sometimes also called a
dead message queue. This channel can help when debugging, why some messages
aren't processed or to monitor where there are problems. In the last section we

Message Channels

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

235

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

describe the Guaranteed delivery channel. We describe that we can't create a
reliable system without at least some guaranties of delivering messages. But we
done;t need always the full guaranteed delivery. Akka doesn't have the full
guaranty delivery, but we describe the level of guaranty delivery, the Akka
framework supports, which differ for sending messages to local and remote actors.

We start this chapter with describing the two types of channels. The first one is the
point-to-point channel. The name describes it characteristics and connect one point,
the sender to one other point, the receiver. Most of the time this is sufficient, but
there are cases that we want to send a message to a number of receivers. In this
case we need we need multiple channels or we use the second type channel the
Publish subscribe channel. Another advantage of this channel is that the number of
receivers can dynamically change when the application is operational. To support
this kind of channel Akka has implemented the EventBus.

A channel transports the message from the sender to the receiver. The
point-to-point channel sends the message to one receiver. We have already used
this kind of channel in all our previous examples. Since we already used this type
of channel in the previous chapters, we will recap the important parts here to
describe the differences between the two types of channels.

In the previous examples the sender knows the next step of the process and can
decide which channel to use to send it's message to the next step. Some time it is
just one like the "Pipe and Filter" examples of section 7.1. In these examples the
sender has one AkkaRef where is sends the message when the actor has finished
processing. But in other cases like the RecipientList of section 7.2.3, the actor has
multiple channels and decide which channel or use multiple channels to send the
message. This way the connectivity between the actors are more of a static nature.

Another characteristic of the channel is that when multiple messages are send
the order of these messages are not changed. A point-to-point channel delivers the
message to exactly one Receiver as shown in Figure 10.1.

Figure 10.1 Point-to-point channel

10.1 Channel types

10.1.1 Point to point

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

236

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

It is possible for a point-to-point channel to have multiple Receivers, but the
channel makes sure that only one Receiver receives the message. The round-robin
Router in section 7.3.1 is an example of the channel having multiple receivers. The
processing of the messages can be done concurrently by different Receivers, but
only one Receiver consumes any one message. This is shown in figure 10.2.

Figure 10.2 Point-to-point channel with multiple receivers

The channel has multiple receivers, but every message is delivered to one
receiver. This type channel is used when the connection between sender and
receiver is more of a static nature. The sender knows which channel it has to use to
reach the receiver.

This type of channel is the most common channel when using Akka. Because in
Akka the ActorRef is the implementation of a point-to-point channel. Because all
the messages send will be delivered to one Actor. And the order of the message
send to the ActorRef will not change when delivered to the receiving Actor.

We have seen in the previous section that the point-to-point channel each message
delivers to only one Receiver. In these cases the sender knows where the message
has to be send to. But some times the sender doesn't know who is interested in the
message. This is the greatest difference between the point-to-point channel and the
Publish-subscribe channel. The channel is responsible for keeping track of the
receivers who need the message instead of the sender. The channel can also deliver
the same message to multiple receivers.

In our web shop the first step is receiving the order. After this first step the
system needs to take the next step in processing, which is deliver the book to the
customer. Therefor the receiving step sends a message to the delivery step. But to

10.1.2 Publish subscribe

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

237

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

keep the inventory up to date we also need the order message in this component.
At this point the received order needs to be distributed to two parts of the system as
shown in Figure 10.3.

Figure 10.3 Web shop processing the order message

As an advertisement action we want to send a present when a customer buys a
book. Therefor we extend our system with a gift module. And again the order
message is needed. So every time we add a new subsystem we need to change the
first step to send the message to more receivers. To solve this problem we can use
the Publish-subscribe channel. The channel is able to send the same message to
multiple receivers, without the sender knows which receiver. Figure 10.4 shows
that the published messages are send to the Delivery and the Inventory subsystem.

Figure 10.4 Using the publish-subscribe channel to distribute the order message

When we want to add the gift functionality we subscribe to the channel and
doesn't need to modify the "Receive Order". Another benefit of this channel is that
the number of receivers can differ during the operation and isn't static. For example
we don't want to send always a present, only on the action days. When using this
channel we are able to add the gift module to the channel only during the action
period and remove the module from the channel when there is no gift action. This
is shown in figure 10.5.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

238

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 10.5 Gift module is receiving only messages on action days

When a receiver is interested in a message of the publisher, it subscribes itself
to the channel. When the publisher sends a message through the channel, the
channel makes sure that all the subscribers gets the message. And when the Gift
Module doesn't need the order messages it unsubscribes itself from the channel.
This makes that the channel methods can be divided into two usages. The first
usage is done at the send side. Here one must be able to publish the messages. The
other usage is at the receiver side. At this end the receivers must be able to
Subscribe and Unsubscribe to the channel. Figure 10.6 shows the two usages.

Figure 10.6 Usages of a publish-subscribe channel

Because the Receivers can subscribe itself to the channel, this solution is very
flexible. The publisher doesn't need to know how many receivers it has. It is even
possible that is has no receivers at some point, because the number of subscribers
can variate during the operation of the system.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

239

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Akka has also support for this kind of channels. The most easiest when needed a
publish-subscribe channel, is to use the EventStream. Every ActorSystem has one
and is therefor also available in all Actors. The EventStream can be seen as a
manager of multiple Publish-Subscribe channels. Because the Actor can be
subscribed to specific message type and when someone publishes a message of that
specific type the actor receives that message. The actor doesn't need any
modifications to receive the messages received from the EventStream. And isn't
any different as all the previous examples we have shown.

The only difference is how the message is send. It isn't even necessary that the
Actor does the subscribing itself. It is possible to make the subscription by anyone
that has the actor reference and the EventStream. Figure 10.7 shows the subscribe
interface of Akka. To subscribe an Actor to receive the Order messages, you need
to call the subscribe method of the EventStream.

Figure 10.7 Subscribe Interface of EventStream

And when the Actor isn't interested anymore, for example our the gift action
ends, than the method Unsubscribe can be used. In the example we Unsubscribe
the GiftModule and after this method call the Actor doesn't receives any Order
messages which are published.

This is all which have to be done when subscribing the GiftModule to receive

AKKA EVENTSTREAM

class DeliverOrder() extends Actor {

 def receive = {
 case msg: Order => ...//Process message
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

240

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

the Order message. After calling the subscribe method the GiftModule will
receives all the Order messages, which are published to the EventStream. This
method can be called for different Actors which need these Order messages. And
when an Actor needs multiple message types, the subscribe method can be called
multiple times with different message types.

To publish a message to the EventStream is also very easy, just call the publish
method as shown in Figure 10.8

Figure 10.8 Publish Interface of EventStream

After this call the message "msg" is send to all subscribed Actors. Which can
do there processing. This is the complete Akka implementation of the
Publish-Subscribe channel.

In Akka it is possible to subscribe for multiple message types. For example our
GiftModule needs also the messages when an order is canceled, because the gift
shouldn't be send also. In this case the GiftModule has subscribed to the
EventStream to receive the Order and Cancel messages. But when calling the
Unsubscribe for the Orders, the subscription for the cancellations is still valid and
these messages are still received. When stopping the GiftModule we need to
Unsubscribe for all subscriptions. This can be done with one call

After this call the GiftModule isn't subscribed to any message type anymore.
These set of four methods is the Akka interface of the publish-subscribe channel,
which is quite simple. Listing 10.1 shows how we can use the Akka EventStream
to receive Order messages.

system.eventStream.unsubscribe(giftModule)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

241

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 10.1 EventStream in Action

Creating our Receiver Actors
Subscribe our Receiver Actors to receive Order messages
Publish an Order
The message is received by both Actors
Unsubscribe the GiftModule
GiftModule doesn't receive the message anymore

We use the TestProbes as the receivers of the messages. And both receivers are
subscribed to receive the Order messages. After publishing one message to the
EventStream both receivers have received the message. And after unsubscribing
the GiftModule, only the DeliverOrder is receiving the messages, just as we
expected.

We already mentioned the benefit of decoupling the receivers and the sender
and the dynamic nature of the publish-subscribe channel, but because the
EventStream is available for all actors is also a nice solution for messages which
can be send from all over the system and needs to be collected at one or more
Actors. A good example is logging. Logging can be done throughout the system
and needs to be collected at one point and be written to a log file. Internally the
ActorLogging is using the EventStream to collect the log lines from all over the
system.

This EventStream is very useful but sometimes we need more control and want

val DeliverOrder = TestProbe()

val giftModule = TestProbe()

system.eventStream.subscribe(
 DeliverOrder.ref,
 classOf[Order])

system.eventStream.subscribe(
 giftModule.ref,
 classOf[Order])
val msg = new Order("me", "Akka in Action", 3)

system.eventStream.publish(msg)

DeliverOrder.expectMsg(msg)

giftModule.expectMsg(msg)

system.eventStream.unsubscribe(giftModule.ref)
system.eventStream.publish(msg)
DeliverOrder.expectMsg(msg)

giftModule.expectNoMsg(3 seconds)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

242

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

to write our own publish-subscribe channel. In the next sub section, we show how
we can do that.

Let assume that we only want to send a gift when someone ordered more than one
book. When implementing this our GiftModule only needs the message when the
amount is higher than 1. When using the EventStream we can't do that filtering
with the EventStream. Because the EventStream works on the class type of the
message. We can do the filtering inside the GiftModule, but lets assume that this
consumes resources we don't want. In that case we need to create our own
publish-subscribe channel and Akka has also support to do that.

Akka has defined a generalized interface the EventBus, which can be
implemented to create a publish-subscribe channel. An EventBus is generalized so
that it can be used for all implementations of a publish-subscribe channel. In the
generalized form there are three entities.

Event
This is the type of all events published on that bus. In the Akka EventStream all uses
AnyRef as event and therefor supports all type of messages
Subscriber
This is the type of subscribers allowed to register on that event bus. In the Akka
EventStream the subscribers are ActorRef's
Classifier
This defines the classifier to be used in selecting subscribers for dispatching events. In
the Akka EventStream the Classifier is the class type of the messages

By changing the definition of these entities, it is possible to create any
publish-subscribe channel possible. The interface has place holders for the three
entities and different publish and subscribe methods which are also available at the
EventStream. In Listing 10.2 the complete interface of the EventBus is shown.

CUSTOM EVENTBUS

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

243

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 10.2 EventBus interface

The whole interface has to be implemented and because most implementations
needs the same functionality Akka has also a set of composable traits
implementing the EventBus interface, which can be used to easily create your own
implementation of the EventBus.

Lets implement a custom EventBus for our GiftModule to be able to receive
only the Orders which have multiple books. With our EventBus we can send and
receive Orders, therefore the Event we are using in our EventBus will be the Order
class. To define this in our OrderMessageBus we simply set de event type defined
in the EventBus

package akka.event

trait EventBus {
 type Event
 type Classifier
 type Subscriber

 /**
 * Attempts to register the subscriber to the specified Classifier
 * @return true if successful and false if not (because it was
 * already subscribed to that Classifier, or otherwise)
 */
 def subscribe(subscriber: Subscriber, to: Classifier): Boolean

 /**
 * Attempts to deregister the subscriber from the specified Classifier
 * @return true if successful and false if not (because it wasn't
 * subscribed to that Classifier, or otherwise)
 */
 def unsubscribe(subscriber: Subscriber, from: Classifier): Boolean

 /**
 * Attempts to deregister the subscriber from all Classifiers it may
 * be subscribed to
 */
 def unsubscribe(subscriber: Subscriber): Unit

 /**
 * Publishes the specified Event to this bus
 */
 def publish(event: Event): Unit
}

class OrderMessageBus extends EventBus {
 type Event = Order

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

244

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Another entity which we needed to define is the Classifier. In our example we
want to make a difference between a single book orders and orders with multiple
books. We have chosen to classify the Order messages on the criteria "is Multiple
Book Order" and use a Boolean as classifier and therefore we have to define the
Classifier as a Boolean. This is defined just as the event.

We skip the subscriber entity for now, because we are going to define that a
little different. We have defined our Classifier and need to keep track of the
subscribers for each Classifier. In our case for the two values of "is Multiple Book
Order" true and false. Akka has three composable traits which can help in keeping
track of the subscribers. All these traits are still generic. So they can be used with
any Entities you have defined. This is done by introducing new abstract methods.

LookupClassification
This trait uses the most basic classification. It maintain a set of subscribers for each
possible classifier and extract a classifier from each event. How it extract a classifier is
done with the classify method which should be implemented by the custom EventBus
implementation.
SubchannelClassification
This trait is used when classifiers form a hierarchy and it is desired that subscription can
be possible not only at the leaf nodes, but also to the higher nodes. This trait is used in the
EventStream implementation, because classes have a hierarchy and it is possible to use
the superclass to subscribe to extended classes.
ScanningClassification
This trait is a more complex one, it can be used when classifiers have an overlap. This
means that one Event can be part of more classifiers, for example if we give more gifts
when ordering more books. When ordering more than 1 book you get a book marker, but
when you order more than 10, you get also an coupon for your next order. So when I
order 11 copies, the order is part of the classifier more than 1 book and more than 10
books. When this order is published the subscribers of "more than one book" need the
message, but also the subscribers of "more than 10 books" needs this order. For this
situation the ScanningClassification trait can be used.

In our implementation we are going to use the LookupClassification. The other
two are similar to this one. These traits implements the subscribe and Unsubscribe

}

class OrderMessageBus extends EventBus {
 type Event = Order
 type Classifier = Boolean
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

245

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

methods of the EventBus interface. But they also introduce new abstract methods
which need to be implemented in our class. When using the LookupClassification
trait we need to implement the following

classify(event: Event): Classifier
This is used for extracting the classifier from the incoming events.
compareSubscribers(a: Subscriber, b: Subscriber): Int
This method must define a order over the subscribers, to be able to compare them just as
the java.lang.Comparable.compare method.
publish(event: Event, subscriber: Subscriber)
This method will be invoked for each event for all subscribers which registered
themselves for the events classifier.
mapSize: Int
This returns the expected number of the different classifiers. This is used for the initial
size of an internal data structure.

We use the "is Multiple Book Order" as classifier. And this has two possible
values, therefore we use the value 2 for the mapSize.

Set the mapSize to 2
Return true when the number is greater than 1 and otherwise false, which is used as
classifier

And we mentioned that the LookupClassification must be able to get a classifier
from our event. This is done by the classify method. In our case we just return the
result of the check event.number > 1. All we need to do now is to define the
subscriber, for this we are using the ActorEventBus trait. This is probably the trait
that will be used most of the time in a Akka message system, because this trait
defines that the subscriber is an ActorRef. It also implements the
compareSubscribers method needed by the LookupClassification. The only method

import akka.event.{LookupClassification, EventBus}

class OrderMessageBus extends EventBus with LookupClassification {
 type Event = Order
 type Classifier = Boolean

 def mapSize = 2

 protected def classify(event: StateEventBus#Event) = {

 event.number > 1
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

246

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

we still need to implement is the publish method, before we are done. The
complete implementation is shown in Listing 10.3.

Listing 10.3 Complete implementation of the OrderMessageBus

At this moment we are done implementing our own EventBus and can be used
to subscribe to and publish messages. In listing 10.4 we see an example how this
EventBus can be used.

import akka.event.ActorEventBus
import akka.event.{ LookupClassification, EventBus }

class OrderMessageBus extends EventBus
 with LookupClassification
 with ActorEventBus {

 type Event = Order
 type Classifier = Boolean
 def mapSize = 2

 protected def classify(event: OrderMessageBus#Event) = {
 event.number > 1
 }

 protected def publish(event: OrderMessageBus#Event,
 subscriber: OrderMessageBus#Subscriber) {
 subscriber ! event
 }
}

Extends our class
with the two
support traits of
Akka
Define the entities

Implement the
classify method

Implement the
publish method by
sending the event
to the subscriber

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

247

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 10.4

Create the OrderMessageBus
Subscribe the singleBooks to the single book classifier (false)
Subscribe the multiBooks to the multi book classifier (true)
Publish a order with one copy
Only the singleBooks receives the message
When publishing a order with multiple copiesonly the multiBooks receives the
message

As you can see our custom EventBus works exactly as the EventStream, only
the used classifier is different. Akka has several other traits which can be used.
More details about these traits can be found in the Akka documentation.

As we have seen in this section Akka has support for publish-subscribe
channels. In most cases the EventStream will be sufficient, when in need for a
publish-subscribe channel. But when you need more specialized channels, it is
possible to create your own, by implementing the EventBus interface. This is a
generalized interface, which can be implemented in any way you need. To support
the implementation of an custom EventBus Akka has several traits which can be
used to implement a part of the EventBus interface.

In this section we have seen the two basic types of channels. In the next section
we take a look at some special channels.

val bus = new OrderMessageBus
val singleBooks = TestProbe()

bus.subscribe(singleBooks.ref, false)
val multiBooks = TestProbe()

bus.subscribe(multiBooks.ref, true)
val msg = new Order("me", "Akka in Action", 1)

bus.publish(msg)
singleBooks.expectMsg(msg)

multiBooks.expectNoMsg(3 seconds)
val msg2 = new Order("me", "Akka in Action", 3)

bus.publish(msg2)
singleBooks.expectNoMsg(3 seconds)
multiBooks.expectMsg(msg2)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

248

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

In this section we take a look at two special channels. The first one is the
DeadLetter channel. This isn't a really a different type of channel as shown in the
previous section. The use of this channel is specific, because one doesn't send
messages to it. Only failed message are put on this channel. Listening on this
channel can help to find problems in your system. The second channel is the
Guaranteed deliver channel. Again this isn't a new type, but this channel guaranties
all messages which are send are also delivered. But we explain in that section that
there are several levels of Guaranties of the delivery, which is important to know
when creating a reliable system. Especially because Akka doesn't support the full
guaranty delivery.

The Enterprise Integration patterns also describe a "dead letter channel" or "dead
letter queue". This is a channel which contain all the messages which can't be
processed or delivered. This channel is also called "dead message queue". This is a
normal channel but you don't normally send any messages using this channel. Only
when there are problems with the message for example it can't be delivered, the
message is placed on this channel. This is shown in figure 10.9.

Figure 10.9 DeadLetter queue

By monitoring this channel you know which messages aren't processed and can
take corrective actions. Especially when testing your system, this queue can be

10.2 Specialized channels

10.2.1 Dead letter

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

249

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

helpful why some messages aren't processed. When creating a system that isn't
allowed to drop any messages, this queue can be used to reinsert the messages
when the initial problems are solved.

Akka is using the EventStream to implement the dead letter queue. This way
only the actors which are interested in the failed messages are receiving them.
When a message is queued in a mailbox of an actor that Terminates or is send after
the Termination, the message is send to the EventStream of the ActorSystem. The
message is wrapped into a DeadLetter object. This Object contains the original
message, the sender of the message and the intended receiver. This way the Dead
letter queue is integrated in the EventStream. To get these dead letter messages you
only need to subscribe your actor to the EventStream with the DeadLetter class as
the Classifier. This is the same as described in the previous section, but only we
using here another messages type, the DeadLetter.

After this subscribe the deadLetterMonitor is getting all the messages that fails
to be delivered. Let take a look at a small example. We create a simple Echo actor
which sends the message receive back to the sender and after starting the actor we
send directly a PoisonPill. This will result in the actor to be terminated. In Listing
10.5 we show that we receive the message when we subscribed to the DeadLetter
queue.

val deadLetterMonitor: ActorRef

system.eventStream.subscribe(
 deadLetterMonitor,
 classOf[DeadLetter])

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

250

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 10.5 Catching messages which can't be delivered

Subscribe to the DeadLetter channel
Terminate the Echo Actor
Send a message to the terminated Actor
Expect a DeadLetter message in the DeadLetterMonitor

Messages send to a Terminated Actor can't be processed anymore and the
ActorRef of this actor should not be used anymore. When there are messages send
to a terminated Actor, these message will be send to the DeadLetter queue. And we
see that our message is indeed received by our deadLetterMonitor.

Another use of the DeadLetter queue is when the processing fails. This is a
Actor specific decision. An actor can decide that a received message couldn't be
processed and that it doesn't know what to do with it. In this situation the messages
can be send to the dead letter queue. The ActorSystem has a reference to the
DeadLetter Actor. When a message need to be send to the dead letter queue, you
can send it to this Actor.

When sending a message to the DeadLetter, it is wrapped also into a
DeadLetter object. But the initial receiver become the DeadLetter Actor. When
creating an auto correcting system, information is lost when sending the message
this way to the DeadLetter Queue. For example the original sender is lost, The only
information you got is the Actor which has send the message to the queue. This
can be sufficient, but when you need also the original sender, it is possible to send

val deadLetterMonitor = TestProbe()

system.eventStream.subscribe(
 deadLetterMonitor.ref,
 classOf[DeadLetter])
val actor = system.actorOf(Props[EchoActor], "echo")

actor ! PoisonPill
val msg = new Order("me", "Akka in Action", 1)

actor ! msg

val dead = deadLetterMonitor.expectMsgType[DeadLetter]
dead.message must be(msg)
dead.sender must be(testActor)
dead.recipient must be(actor)

system.deadLetters ! msg

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

251

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

a DeadLetter Object instead of the original message. When this message type is
received, the wrapping is skipped and the message send is put on the queue without
any modification. In Listing 10.6 we send a DeadLetter Object and see that this
message isn't modified.

Listing 10.6 Sending DeadLetter messages

Create a Actor reference which will be used as initial recipient
Create the DeadLetter message and send it to the DeadLetter Actor
The DeadLetter message is received in the monitor

As shown in the example the DeadLetter message is received unchanged. This
makes it possible to handle all the messages, which are not processed or couldn't be
delivered, the same. What to do with the messages is completely depended on the
system our are creating. Sometimes it isn't even important to know that messages
were dropped, but when creating a highly robust system, you may want to resend
the message again to the recipient like it was send initially.

In this section we described how to catch message which failed to be processed.
In the next section we describe another specialize channel, according the Enterprise
Integration patterns, the Guaranteed delivery channel

val deadLetterMonitor = TestProbe()

val actor = system.actorOf(Props[EchoActor], "echo")
system.eventStream.subscribe(
 deadLetterMonitor.ref,
 classOf[DeadLetter])
val msg = new Order("me", "Akka in Action", 1)

val dead = DeadLetter(msg, testActor, actor)
system.deadLetters ! dead

deadLetterMonitor.expectMsg(dead)
system.stop(actor)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

252

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The guaranteed delivery channel is point-to-point channel with the guaranty that
the message is always delivered to the receiver. This means that the delivery is
done even when all kind of errors occurs. This means that the channel must have
all kind of mechanism and checks to be able to guaranty the delivery, for example
the message has to be saved on disk in case the process crashes. Don't we need
always the guaranteed delivery channel, when creating a system? Because how can
we create a reliable system, when it isn't guarantied that messages are delivered?
Yes we need some guaranties, but we don't need always the maximum available
guaranty.

Actually, implementations of a guaranteed delivery channel, aren't able to
guaranty the delivery in all situations. For example when a message is send from
one location and that location burns down. In that situation no possible solution
can found to send the message anywhere, because it is lost in the fire. The question
we need to ask is, is the level of guaranty sufficient for our purpose. What would
happened when the message was delivered? Probably the receiver would fail
because of the same reason that most of the system isn't available anymore.

When creating a system, we need to know what guaranties the channel has and
if that is sufficient for your system. Let's take a look at the guaranties Akka
provides.

The general rule of message delivery is that messages are delivered
at-most-once. This means that Akka promise that messages are delivered once or
fails to deliver, Which means that the message is lost. This doesn't look good to
build a reliable system. Why doesn't Akka implement a full guarantied delivery.
The first reason is that while implementing this, you have to address several
challenges, which make it complex and needs a lot of overhead to send one
message. This results in a performance penalty even when you don't need that level
of guaranty delivery.

Secondly nobody needs just Reliable Messaging. One wants to know if the
request was successful processed, which is done by receiving a business-level
acknowledgement message. This is not something Akka could make up, because
this is system depended. The last reason why Akka doesn't implements a full
guaranty delivery, is that it is always possible to add stricter guarantees on top of
basic ones, when needed. The other way around to lose guaranties, to improve
performance is not possible.

But when Akka can't guaranty that a message is delivered, makes it very hard to

10.2.2 Guaranteed delivery

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

253

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

create a reliable message system. But this is the basic rule for delivery of messages
to local and remote actors. When we look these two situations separately, we see
that Akka isn't as bad as it sounds.

Sending local messages will not likely fails, because it is like a normal method
call. This fails only when there are catastrophic VM errors, like
StackOverflowError, OutOfMemoryError or a memory access violation. In all of
these cases, the actor was very likely not in a position to process the message
anyway. So the guaranties when sending a message to a local actor, are pretty good
and reliable.

The problem of losing the messages is when using remote actors. When using
remote actors, it is a lot more likely for a message delivery failure to occur.
Especially when an intermediate unreliable network is involved. If someone
unplugs an Ethernet cable, or a power failure shuts down a router, messages will be
lost and the actors would be able to process them just fine if it was received. To
solve this the ReliableProxy is created. This makes sending messages as reliable as
sending local messages. The only consideration is that both JVM's of the sender
and receiver are influencing the reliability of this channel.

How does the ReliableProxy work? When starting the ReliableProxy creates a
tunnel between the two ActorSystems on the different Nodes.

Figure 10.10 ReliableProxy

As shown in Figure 10.10 this tunnel has an entry, which is the ReliableProxy

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

254

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

and an exit the Egress. The Egress is an Actor which is started by the
ReliableProxy and both Actors implements the checks and resend functionality to
be able to keep track of which of the messages are delivered to the remote receiver.
When the delivery fails the ReliableProxy will retransmit the messages until it
succeed. When the egress has received the message it checks if it was already was
received and send it to the actual receiver. But what happens when the target actor
is terminated. When this happens it is impossible to deliver the message. This is
solved by the ReliableProxy to terminate also when the target terminates. This way
the system behaves the same way as using a direct reference. On the receiver side
the difference is also not visible between sending messages direct or using the
proxy. One restriction of using the ReliableProxy is that the tunnel is only one-way
and for one receiver. This means that when the receiver replies to the sender the
tunnel is NOT used. When the reply has to be also reliable, than another tunnel has
to be made between the Receiver and the Sender.

Now let us see this in action. To create a Reliable proxy is simple all we need is
a reference to the remote target Actor

In the example we create a proxy using the echo reference. We also add a
retryAfter value of 500 milliseconds. When failing to send a message it is retried
after 500 milliseconds. This is all we have to do to use the Reliable Proxy. To
show the result we create a Multi-node test with two nodes, the client and server
node. On the server Node we create a EchoActor as receiver and on the client node
we run our actual test. Just as in Chapter 5 we need the multitude configuration and
the STMultiNodeSpec for our ReliableProxySample test class.

import akka.contrib.pattern.ReliableProxy

val echo = system.actorFor(node(server) / "user" / "echo")

val proxy = system.actorOf(
 Props(new ReliableProxy(echo, 500.millis)), "proxy")

import akka.remote.testkit.MultiNodeSpecCallbacks
import akka.remote.testkit.MultiNodeConfig
import akka.remote.testkit.MultiNodeSpec

trait STMultiNodeSpec
 extends MultiNodeSpecCallbacks
 with WordSpec
 with MustMatchers

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

255

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Because we want to demonstrate that the message is send even when the
network is down for a while, we need to turn on the testTransport. As we
mentioned we need to run an EchoService on the server node.

This service echo's every message it receives back to the sender. When this is
running we can do the actual test on the client node. To create the full environment
where we can do our test is shown in Listing 10.7.

 with BeforeAndAfterAll {

 override def beforeAll() = multiNodeSpecBeforeAll()

 override def afterAll() = multiNodeSpecAfterAll()
}

object ReliableProxySampleConfig extends MultiNodeConfig {
 val client = role("Client")
 val server = role("Server")
 testTransport(on = true)
}

class ReliableProxySampleSpecMultiJvmNode1 extends ReliableProxySample
class ReliableProxySampleSpecMultiJvmNode2 extends ReliableProxySample

Define client Node
Define server Node
We want to
simulate Transport
failures

system.actorOf(Props(new Actor {
 def receive = {
 case msg:AnyRef => {
 sender ! msg
 }
 }
 }), "echo")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

256

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 10.7 Setup of the environment for the ReliableProxySample test

Create reference to echo service

import akka.remote.testconductor.Direction
import scala.concurrent.duration._
import concurrent.Await
import akka.contrib.pattern.ReliableProxy

class ReliableProxySample
 extends MultiNodeSpec(ReliableProxySampleConfig)
 with STMultiNodeSpec
 with ImplicitSender {

 import ReliableProxySampleConfig._

 def initialParticipants = roles.size

 "A MultiNodeSample" must {

 "wait for all nodes to enter a barrier" in {
 enterBarrier("startup")
 }

 "send to and receive from a remote node" in {
 runOn(client) {
 enterBarrier("deployed")

 val echo = system.actorFor(node(server) / "user" / "echo")
 val proxy = system.actorOf(

 Props(new ReliableProxy(echo, 500.millis)), "proxy")

 ... Do the actual test
 }

 runOn(server) {

 system.actorOf(Props(new Actor {
 def receive = {
 case msg:AnyRef => {
 sender ! msg
 }
 }
 }), "echo")
 enterBarrier("deployed")
 }

 enterBarrier("finished")
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

257

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Create ReliableProxy tunnel
Implement the echo service

Now that we have our complete test environment we can implement the actual
test. In Listing 10.8 we show that the message which is send while there was no
communication between the nodes is only processed when we use the proxy. When
using the direct actor reference the message is lost.

Listing 10.8 Implementation of the ReliableProxySample

Test the proxy under normal conditions
Turn off the communication between the two nodes
Send a message using both references
Restore the communication
The message send using the proxy is received
Final test that the direct send messages are received when communication is
restored

Using the ReliableProxy gives you the same guaranties for remote Actors as
local actors. Which is that as long there are no critical VM errors in the JVM
runtime on all Nodes of the system, the message is delivered one time to the
destination Actor.

In this chapter we have seen that Akka doesn't have a full Guarantied delivery
channels, but there is a level of guaranties Akka can give. For local actors the
delivery is guarantied as long there are no critical VM errors. For remote actors the
at-most-once the delivery is guaranteed. But this can be improved by using the

proxy ! "message1"
expectMsg("message1")
Await.ready(

 testConductor.blackhole(client, server, Direction.Both),
 1 second)

echo ! "DirectMessage"
proxy ! "ProxyMessage"
expectNoMsg(3 seconds)

Await.ready(

 testConductor.passThrough(client, server, Direction.Both),
 1 second)

expectMsg("ProxyMessage")

echo ! "DirectMessage2"
expectMsg("DirectMessage2")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

258

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

ReliableProxy when sending the message to across the JVM boundaries. Using this
proxy gives the same guaranties as sending messages locally.

These guaranties of delivery is enough for most system, but when a system
needs more Guaranties you can create mechanism on top of the Akka delivery
system to get those guaranties. This isn't implemented by Akka because this is
often system specific and take a performance hit which isn't necessary on most
cases.

We have seen in this chapter that there are two types of messaging channels. The
point-to-point channel, which sends a message to one receiver and the
publish-subscribe channel, which can send a message to multiple receivers.
Receivers can subscribe itself to the this last channel, which makes the receivers
dynamic. At any time the number can variate. Akka has a the EventStream which
is the default implementation of a publish-subscribe channel. Which use the class
types of the messages as classifier. Akka has several traits which can be used to
make your own publish-subscribe channel, when the EventStream isn't sufficient.

We have also seen that Akka has a DeadLetter channel, which uses the
EventStream. This channel contains all the message that could not be delivered to
the requested Actor. And can be used when debugging your system, when message
sometimes get lost.

In the last section, we took a closer look at the delivery guaranties of Akka.
And seen that there is a difference between messages send to local Actors and
remote Actors. And when we need the same delivery guaranties we can use the
ReliableProxy. But be careful this is only one-way. When the receiver sends a
message to the sender, the ReliableProxy isn't used.

In this chapter we have seen how we can send messages between Actors. But
the Actors implements the functionality of the system. When implementing these
functionality, it is possible that the actor needs state to be implement this
functionality. Next chapter we see how we can implement actors with state.

10.3 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

259

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

11
In this chapter

Finite State Machine
Agents
Shared state

This book has advanced many reasons for stateless components when
implementing a system. This is to avoid all kinds of problems, like restoring state
after an error. But in most cases there are components within a system which need
state to be able to provide the required functionality. In chapter 7, we saw two
possible ways to keep state in an Actor. The first was to use class attributes, which
we showed in our aggregator example. This is the simplest way. The second
solution was to use the become/unbecome functionality, which we used in our
state-dependent router. These two mechanisms are the more basic ways to
implement state. But in some situations, these solutions are insufficient.

In this chapter, we show you two other solutions for dealing with state. We start
with how to design dynamic behavior, depending on the actor's state, using Finite
State Machine Modeling. We create an example model which will be implemented
in the second section, where we show that Akka has support for easily
implementing a Finite State Machine. In the last section, we show how we can
share state between different threads by using Akka agents. Using these agents
eliminates the need to use locking mechanisms, because the state of the Agents can
be changed only asynchronously using events, but the state can be read
synchronously, without any performance penalty.

Finite State Machines and Agents

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

260

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Finite-state machine (FSM), also called a state machine, is a common,
language-independent modeling technique. FSMs can model a large number of
problems, common applications are communication protocols, language parsing,
and even business problems like Purchase Orders, Quotes, and Orders. What they
encourage is isolation of state; we will see our Actors called on mostly to transition
things from one state to another, in atomic operations, thus no locks will be
needed. For those who have not encountered them, we start with a short
description. After this introduction, we move on to an FSM example, which we
will implement with Akka in the next section.

The simplest example of a Finite State Machine is a device whose operation
proceeds through several states, transitioning from one to the next as certain events
occur. The washing machine is usually the classic example used to explain FSMs:
there is a process that requires initiation steps, then once the machine takes over, it
progresses through a sequence of specific states (filling the tub, agitation, draining,
spinning). The transitions in the washing machine are all triggered by a program
that wants a certain amount of each stage, based on the User's desires (light/heavy
loads, prewash, etc.). The machine is only ever in one state at a time. The PO
process mentioend above is a similar example from business: there is an
established protocol for two parties to define an exchange of goods or services.
With the example of the business documents, we see that for each stage of the
machine, there is a state representation (a PO, or a Quote or a Request for Quote).
Modeling software this way allows us to deal with state in an atomic, isolated way,
which is a core principal of the Actor model.

An FSM is called a machine because it can only be in one of a finite number of
states. Changing from one state to another is triggered by an event or condition.
This state change is called a transition. A particular FSM is defined by a number of
states and the different triggers for all the possible transitions. There are a lot of
different ways to describe the FSM, but most of the time the FSM is described in
some kind of a diagram. In Figure 11.1 we show a simple diagram to illustrate how
we describe the FSM, because there are a number of different notations when
creating an FSM diagram.

11.1 Using a Finite State Machine

11.1.1 Quick introduction of Finite State Machine

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

261

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 11.1 Diagram example of a Finite State Machine

In this example we show an FSM with two states, State1 and State2. When
instantiating the machine, we start in State1, which is shown in the diagram by the
black dot. State1 has two different actions. An Entry action and an Exit action.
(Although we won't use the exit action in this chapter, we show it so you'll
understand how the model works.) Just as the name says, the first action is
executed when the machine sets the state State1 and the second when the machine
changes from State1 to another state. In this example we have only two states so
this action is only executed when it goes to State2. In the next examples, we only
use the Entry actions, because this is a simple FSM. Exit actions can do some
cleaning or restore some state, so they don't embody part of the logic of the
machine. It can be seen more like a finally clause in a try-catch statement, which
must always be executed when exiting the try block.

Changing state, which is called a transition, can only happen when the machine
is triggered by an event. In the diagram this transition is shown by the arrow
between State1 and State2. The arrow indicates the Event and optionally a state
condition (for instance, we might only transition to the spin cycle when the tank is
empty). The events in the Akka FSM are the messages the Actor receives. That's it
for the introduction, now let's see how an FSM can help us implement a solution to
a real problem.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

262

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The example we are going to see to show how we can use FSM support in Akka is
the inventory system of the bookstore. The inventory Service gets requests for
specific books and sends a reply. When the book is in inventory, the order system
gets a reply that a book has been reserved. But it is possible that there aren't any
books left and that the inventory will have to ask the publisher for more books,
before it can service the order. These messages are shown in Figure 11.2.

Figure 11.2 The Inventory example

To keep the example simple, we have only one type of book in our inventory
and we support ordering only one book at the time. When an order is received the
inventory checks if it has any copies of that book. When there are copies, the reply
is created that the book is reserved. But when there aren't any copies of the
requested book left, the processing has to wait and request more books from the
Publisher. The publisher can respond by supplying more books or with a sold out
message. During the wait for more books, other orders can be received.

To describe the situation we can use an FSM, because the inventory can be in
different states and expect different messages before it can proceed to the next step.
Figure 11.3 shows our problem using the FSM.

11.1.2 Creating an FSM model

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

263

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 11.3 FSM of the Inventory example

One thing the diagram does not depict is the fact that we can still receive
BookRequests, which will be added to the PendingRequest List, while in our wait
state. This is important because it represents the preservation of needed
concurrency. Note that when we get back to the wait state, it is possible that there
are pending requests. The entry action is to check and if there are, trigger one or
both transitions depending on the number of books in the store. When the books
are sold out, the state becomes 'Process SoldOut.' This state sends an error reply to
the order requester and triggers the transition to the state 'SoldOut.' FSMs give us
the ability to describe complex behaviour in a clear, concise manner.

Now that we have described our solution using an FSM, let's see how Akka can
help to implement our FSM model.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

264

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

1.

2.

In section 7.3.3 we saw the become/unbecome mechanism. This can help in
implementing an FSM; just as we did in the State base router: we can map
behaviors to states. It is possible to use become/unbecome mechanism for small
and simple FSM models. But when there are multiple transitions to one state, the
implementation of the Entry action has to be implemented in different
become/receive methods, which can be hard to maintain for more complex FSMs.
Therefore, Akka provides an FSM trait, which we can use when implementing an
FSM Model. This results in clearer and more maintainable code. In this section, we
explain how to use this FSM trait. We start by implementing the transitions of our
inventory FSM, and in the next section we implement the entry actions to complete
the implementation of the inventory FSM. At this point, we implement the
designed FSM, but Akka FSM also has support for using timers within the FSM,
which is described next. We end with the Termination of the Akka FSM, which
enables us to do some cleanup when needed.

To start implementing an FSM model using Akka, we create an Actor with the
FSM trait. (The FSM trait may only be mixed into an Actor.) Akka has chosen the
self type approach instead of extending Actor to make it obvious that an actor is
actually created. When implementing an FSM, we need to take several steps before
we have a complete FSM Actor. The two biggest ones are defining the state and
then the transitions. So let's get started creating our Inventory FSM, by making an
Actor with the FSM trait mixed in.

The FSM trait takes two type parameters:

State
The super type of all state names
StateData
The type of the state data which are tracked by the FSM.

The super type is usually a sealed trait with case objects extending it, because it

11.2 Implementation of an FSM model

11.2.1 Implementing transitions

import akka.actor.{Actor, FSM}

class Inventory() extends Actor with FSM[State, StateData] {
...
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

265

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

doesn't make sense to create extra states without creating transitions to those states.
So let's start to define our states. We'll do that in the next section.

The state definition process starts with a single trait (appropriately named) 'State,'
with cases for each of the specific states our object can be in (note: this helps make
the FSM code self-documenting).

The defined states are the same as shown in the previous section. Next we have
to create our state data.

This is the data that we use when we need a State condition to decide which
transition is fired. So it contains all the pending requests and the number of books
in store. In our case we have one class which contains the StateData (which is used
in all states) but this isn't mandatory. It is possible to use a trait for the StateData as
well. And create different StateData classes that extend the basic state trait. The
first step in implementing the FSM is we define the initial state and the initial
StateData. This is done using the startWith method

Here we define that our FSM starts in the state WaitForRequests and the
stateData is empty. Next we have to implement all the different state transitions.
These state transitions only occurs when there is an event. And in the FSM trait we
define for each state which events we expect and what the next state will be. By

DEFINING THE STATE

sealed trait State
case object WaitForRequests extends State
case object ProcessRequest extends State
case object WaitForPublisher extends State
case object SoldOut extends State
case object ProcessSoldOut extends State

case class StateData(nrBooksInStore:Int,
 pendingRequests:Seq[BookRequest])

class Inventory() extends Actor with FSM[State, StateData] {
 startWith(WaitForRequests, new StateData(0,Seq()))
...
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

266

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

defining the next state we have designated a transition. So we start with the Events
of the state WaitForRequests. In the next section, we will define the actual
transitions and see how we go from plan to working code.

Lets look at Figure 11.4 where we have our state and the two possible transitions.

Figure 11.4 State transitions of state Wait for Requests

We see that we can expect two possible events. The BookRequest or the
PendingRequests message. And depending on the state nrBooksInStore the state
changes to ProcessRequest or WaitForPublisher, which are the transitions. We
need to implement these transitions in our Inventory FSM. We do that with the
"when" declaration.

Declare the transitions for state WaitForRequests

DEFINING THE TRANSITIONS

class Inventory() extends Actor with FSM[State, StateData] {
 startWith(WaitForRequests, new StateData(0,Seq()))

 when(WaitForRequests) {

 case Event(request:BookRequest, data:StateData) => {

 }

 case Event(PendingRequests, data:StateData) => {
 ...
 }
 }

...
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

267

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Declare the possible Event when a BookRequest messages occur
Declare the possible Event when a PendingRequests messages occur

We start with the "when" declaration for the WaitForRequests state. Which is a
partial function to handle all the possible Events, in the specified State. In our case
we can have two different Events. When we are in the WaitForRequests state, a
new BookRequest or a PendingRequests message can arrive. Next we have to
implement the transition.

Either we are going to remain in the same state or we are going to transition to
another one. This can be indicated by the following two methods

Declare that the next state is WaitForPublisher
Declare that the state doesn't change

Another responsibility of this transition declaration is updating the StateData.
For example when we receive a new BookRequest Event we need to store the
request in our PendingRequests. This is done by the "using" declaration. When we
implement the complete transition declaration for the WaitForRequests State we
get the following

goto(WaitForPublisher)

stay

when(WaitForRequests) {
 case Event(request:BookRequest, data:StateData) => {

 val newStateData = data.copy(
 pendingRequests = data.pendingRequests :+ request)
 if (newStateData.nrBooksInStore > 0) {

 goto(ProcessRequest) using newStateData
 } else {
 goto(WaitForPublisher) using newStateData
 }
 }
 case Event(PendingRequests, data:StateData) => {
 if (data.pendingRequests.isEmpty) {

 stay
 } else if(data.nrBooksInStore > 0) {

 goto(ProcessRequest)
 } else {
 goto(WaitForPublisher)
 }
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

268

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Create a new state, by appending the new request
declare the next state and update the stateData
Use the stay when there are not any pending requests.
Use the goto without updating the stateData

In this example, we used the stay without updating the stateData, but it is
possible to update the state with "using" too, just like the goto declaration. This is
all we have to do to declare the transitions of our first state. The next step is to
implement the transitions for all our states. When we examine the possible Events
more closely, we see that the Event BookRequest in most states has the same
effect: we generally want to just add the request to our pending requests and do
nothing else. For these events, we can declare the "whenUnhandled." This Partial
function is called when the state partial function doesn't handle the event. Here we
can implement the default behaviour when a BookRequest is received. The same
declarations can be used as we did in the "when" declaration.

In this partial function we can also log unhanded events, which can be helpful
with debugging this FSM implementation. Now we can implement the rest of the
states.

whenUnhandled {
 // common code for all states
 case Event(request:BookRequest, data:StateData) => {
 stay using data.copy(
 pendingRequests = data.pendingRequests :+ request)
 }
 case Event(e, s) => {
 log.warning("received unhandled request {} in state {}/{}",
 e, stateName, s)
 stay
 }
}

Only update the
stateData

Log when the event
isn't handled

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

269

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 11.1 Implementation of the transition of the other states

Now we have defined all our transitions for every possible state. This was the
first step in creating an Akka FSM Actor. At this moment, we have an FSM and
react to events and change state but the actual functionality of the model, the entry
actions, are not implemented yet. This is covered in the next section.

The actual functionality is done by the entry and exit actions. At this point we are
going to implement these actions. In our FSM model, we had defined several entry
actions. Just as declaring the transitions for each state, the actions are also
implemented for each state. In Figure 11.5 we show the initial state
WaitForRequests again, to see the Entry action we have to implement. The discreet
structure of the implementation code, as we will see, also lends itself to unit
testing.

when(WaitForPublisher) {
 case Event(supply:BookSupply, data:StateData) => {
 goto(ProcessRequest) using data.copy(
 nrBooksInStore = supply.nrBooks)
 }
 case Event(BookSupplySoldOut, _) => {
 goto(ProcessSoldOut)
 }
}
when(ProcessRequest) {
 case Event(Done, data:StateData) => {
 goto(WaitForRequests) using data.copy(
 nrBooksInStore = data.nrBooksInStore - 1,
 pendingRequests = data.pendingRequests.tail)
 }
}
when(SoldOut) {
 case Event(request:BookRequest, data:StateData) => {
 goto(ProcessSoldOut) using new StateData(0,Seq(request))
 }
}
when(ProcessSoldOut) {
 case Event(Done, data:StateData) => {
 goto(SoldOut) using new StateData(0,Seq())
 }
}

The transition
declaration of the
state
WaitForPublisher

The transition
declaration of the
state
ProcessRequest

The transition
declaration of the
state SoldOut

The transition
declaration of the
state
ProcessSoldOut

11.2.2 Implementing the entry actions

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

270

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 11.5 The entry Action of the WaitForRequests state

The entry action can be implemented in the onTransition declaration. It is possible
to declare every possible transition because the transition callback is also a partial
function and takes as input the current and the next state.

In this example we defined the action which has to be executed when the
transition occurs from 'WaitForRequests' to 'WaitForPublisher.' But it is also
possible to use wild cards. In our example, we don't care which state we are
coming from, so we use the wild card on the original state. When implementing the
action, one would probably need the stateData because this is called when a
transition occurs, both the before state and the state after the transition are available
and can be used. The new state is available via the variable nextStateData and the
old stateData is available via the variable stateData. In our example, we only use
the newly created state, because we have only entry actions and our state always
contains the complete state. In listing 11.2 we implement all the Entry actions of
our FSM.

ACTIONS ON TRANSITIONS

onTransition {
 case WaitForRequests -> WaitForPublisher => {
 ...
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

271

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 11.2 Implementation of the entry actions

If you look closely you see that we don't have a declaration for the state
SoldOut and that is because that state doesn't have an entry action. Now that we
have defined our complete FSM, we need to call one important method "initialize".
This method is needed to initialize and startup the FSM.

class Inventory(publisher:ActorRef) extends Actor
 with FSM[State, StateData] {

 startWith(WaitForRequests, new StateData(0,Seq()))

 when...

 onTransition {
 case _ -> WaitForRequests => {
 if (!nextStateData.pendingRequests.isEmpty) {
 // go to next state
 self ! PendingRequests
 }
 }
 case _ -> WaitForPublisher => {
 publisher ! PublisherRequest
 }
 case _ -> ProcessRequest => {
 val request = nextStateData.pendingRequests.head
 reserveId += 1
 request.target !
 new BookReply(request.context, Right(reserveId))
 self ! Done
 }
 case _ -> ProcessSoldOut => {
 nextStateData.pendingRequests.foreach(request => {
 request.target !
 new BookReply(request.context, Left("SoldOut"))
 })
 self ! Done
 }
 }
}

The entry action to
check for pending
requests

The entry action to
send request to
publisher
The entry action to
send a reply to the
sender and signal
that the processing
is done

The entry action to
send a error reply
to all the
PendingRequests
and signal that the
processing is done

class Inventory(publisher:ActorRef) extends Actor
 with FSM[State, StateData] {

 startWith(WaitForRequests, new StateData(0,Seq()))

 when...

 onTransition...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

272

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The FSM is ready, all we need is a mock up implementation for the publisher
and we can test our FSM. This implementation will supply a predefined number of
books. And when all the books are gone, the SoldOut reply is sent.

Now we are ready to test the FSM. We can test the FSM by just sending messages
and checking if we get the expected result. But while debugging this component,
there is additional available information. Akka's FSM has another helpful feature.
It is possible to subscribe to the state changes of the FSM. This can prove useful in
programming the application functionality, but it can also be very helpful when
testing. It will allow you to closely check if all the expected states were
encountered. And if all transitions occur at the correct time. To subscribe to the
transition Event, all you have to do is to send a 'SubscribeTransitionCallBack'
message to the FSM. In our test, we want to collect these transition events within a
testprobe.

 initialize
}

TESTING THE FSM

class Publisher(totalNrBooks: Int, nrBooksPerRequest: Int)
 extends Actor {

 var nrLeft = totalNrBooks
 def receive = {
 case PublisherRequest => {
 if (nrLeft == 0)
 sender ! BookSupplySoldOut
 else {
 val supply = min(nrBooksPerRequest, nrLeft)
 nrLeft -= supply
 sender ! new BookSupply(supply)
 }
 }
 }
}

No more books left

Supply a number of
books

 val publisher = system.actorOf(Props(new Publisher(2,2)))
val inventory = system.actorOf(Props(new Inventory(publisher)))
val stateProbe = TestProbe()

First we create the
Publisher actorNotice, we pass the
publisher when
creating the
inventory actor

The probe is
©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
http://www.manning-sandbox.com/forum.jspa?forumID=835

273

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

When subscribing to an FSM the request, the FSM responds with a
CurrentState message. Our FSM starts in the WaitForRequests just as we expected.
Now that we are subscribed to the transitions, we can send a BookRequest and see
what happens

As you see the FSM goes through different states before sending a reply. First it
has to get books from the publisher. The next step is to actually process the
request. And finally the state returns into the 'WaitForRequests' state. But we know
that the Inventory got two copies, so when we send another request, the FSM goes
through different states than the first time.

Because there was a book available, it skipped the 'WaitForPublisher' state. At
this point, all the books have been sold so what happens when we send another
BookRequest?

inventory ! new SubscribeTransitionCallBack(stateProbe.ref)
stateProbe.expectMsg(new CurrentState(inventory, WaitForRequests))

The probe is
subscribed to
transition
notifications

Probe should get a
notification

inventory ! new BookRequest("context1", replyProbe.ref)
stateProbe.expectMsg(
 new Transition(inventory, WaitForRequests, WaitForPublisher))
stateProbe.expectMsg(
 new Transition(inventory, WaitForPublisher, ProcessRequest))
stateProbe.expectMsg(
 new Transition(inventory, ProcessRequest, WaitForRequests))
replyProbe.expectMsg(new BookReply("context1", Right(1)))

Sending this
message should
trigger state
changes
The inventory actor
will transition
through 3 states to
handle our
preliminary book
requestFinally, we will get
our reply.

inventory ! new BookRequest("context2", replyProbe.ref)
stateProbe.expectMsg(
 new Transition(inventory, WaitForRequests, ProcessRequest))
stateProbe.expectMsg(
 new Transition(inventory, ProcessRequest, WaitForRequests))
replyProbe.expectMsg(new BookReply("context2", Right(2)))

inventory ! new BookRequest("context3", replyProbe.ref)
stateProbe.expectMsg(
 new Transition(inventory, WaitForRequests, WaitForPublisher))
stateProbe.expectMsg(
 new Transition(inventory, WaitForPublisher, ProcessSoldOut))
replyProbe.expectMsg(
 new BookReply("context3", Left("SoldOut")))
stateProbe.expectMsg(
 new Transition(inventory, ProcessSoldOut, SoldOut))

Each test requires
merely that we
send the same
message

Different outcome

this time: we are
©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
http://www.manning-sandbox.com/forum.jspa?forumID=835

274

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Now we get the 'SoldOut' message just as we designed. This is basically the
functionality of the FSM, but because a lot of times FSM models use timers to
generate events and trigger transitions. Therefore Akka also supports timers within
its FSM.

As we mentioned earlier, an FSM can model a large number of problems and a lot
of solutions for these problems depend on timers. For example to detect an idle
connection or a failure because the reply isn't received within a specified time. To
demonstrate the use of timers, we are going to change our FSM a little. When it is
in the state 'WaitingForPublisher,' we don't wait forever for the publisher to reply.
If the publisher fails to respond, we want to send the request again. Figure 11.6
shows the changed FSM.

Figure 11.6 FSM using timers

The only change is that a timer is set as part of the entry action and when this
timer expires the state changes to the WaitForRequests state. When this happens

this time: we are
sold out

11.2.3 Timers within FSM

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

275

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

the WaitForRequests checks if there are PendingRequests (and there must be,
otherwise the FSM wouldn't have been in the state 'WaitForPublisher' in the first
place). And because there are PendingRequests, the FSM goes to WaitForPublisher
state again. which triggers the entry action again and a message is sent to the
publisher.

The changes we need to make here are minor. First, we have to set the timeout.
This can be done setting the stateTimeout when declaring the state transitions of
the WaitForPublisher state, and the second change is to define the transition when
the timer expires. The changed "when" declaration becomes:

That is all we need to do to be able to retransmit to the publisher using a timer.
This timer is canceled upon reception of any other message while in the current
state. You can rely on the fact that the StateTimeout message will not be processed
after an intervening message. Let's see how this works in action by executing the
following test in Listing 11.3.

when(WaitForPublisher, stateTimeout = 5 seconds) {
 case Event(supply:BookSupply, data:StateData) => {
 goto(ProcessRequest) using data.copy(
 nrBooksInStore = supply.nrBooks)
 }
 case Event(BookSupplySoldOut, _) => {
 goto(ProcessSoldOut)
 }
 case Event(StateTimeout,_) => goto(WaitForRequests)
}

set the
stateTimeout

Define the timeout
transition

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

276

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 11.3 Testing Inventory with timers

As you can see, when the publisher doesn't respond with a reply, the state
changes after 5 seconds to the WaitForRequests state. There is another way to set
the stateTimer. The timer can also be set by specifying the next state using the
method forMax. For example, when we want to set the stateTimer differently,
coming from another state. In the next snippet, we see an example how we can use
the forMax method

When using this method, it will overrule the default timer setting specified in
the WaitForPublisher when declaration. With this method it is also possible to turn
off the timer by using Duration.Inf as the value in the forMax method.

Beside the state timers, there is also support for sending messages using timers
within FSM. The usage is not complex and therefore we just need a quick
summary of the API. There are tree methods to deal with FSM timers. The first one
is to create a timer.

val publisher = TestProbe()
val inventory = system.actorOf(
 Props(new InventoryWithTimer(publisher.ref)))
val stateProbe = TestProbe()
val replyProbe = TestProbe()
inventory ! new SubscribeTransitionCallBack(stateProbe.ref)
stateProbe.expectMsg(
 new CurrentState(inventory, WaitForRequests))
//start test
inventory ! new BookRequest("context1", replyProbe.ref)
stateProbe.expectMsg(
 new Transition(inventory, WaitForRequests, WaitForPublisher))
publisher.expectMsg(PublisherRequest)
stateProbe.expectMsg(6 seconds,
 new Transition(inventory, WaitForPublisher, WaitForRequests))
stateProbe.expectMsg(
 new Transition(inventory, WaitForRequests, WaitForPublisher))

Wait more than 5
seconds for this
transition

goto(WaitForPublisher) using (newData) forMax (5 seconds)

setTimer(name: String,
 msg: Any,
 timeout: FiniteDuration,
 repeat: Boolean)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

277

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

All the timers are references with their name. With this method we create a
timer and define: the name, the message to send when the timer expires, the
interval of the timer, and if it is a repeating timer.

The next method is to cancel the timer

This will cancel the timer immediately and even when the timer has already
fired and enqueued the message, the message will not be processed after this
cancelTimer call. The last method can be used to get the status of the timer at any
time

This method will return true when the timer is still active. This can be that the
timer didn't fire yet or that the timer has the repeat set to true.

Sometimes we need to do some cleanup when an Actor finishes. The FSM has an
specific handler for these cases: onTermination. This handler is also a partial
function and takes a StopEvent as an argument.

There are three possible reasons this can be received.

Normal
This is received when there is a normal termination.
Shutdown
This is received when the FSM is stopped due to a shutdown.
Failure(cause: Any)
This reason is received when the termination was caused by a failure

A common termination handler would look something like this

cancelTimer(name: String)

isTimerActive(name: String): Boolean

11.2.4 Termination of FSM

StopEvent(reason: Reason, currentState: S, stateData: D)

onTermination {
 case StopEvent(FSM.Normal, state, data) // ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

278

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

An FSM can be stopped from within the FSM. This can be done using the stop
method, which takes the reason why the FSM is to be stopped. When the ActorRef
is used to stop the actor, the shutdown reason is received in the termination
handler.

Using the Akka FSM trait gives a complete toolkit to implement any FSM,
without much extra effort. There is a clean separation between the actions of a state
and the state transitions. The support of timers make it easy to detect idle state or
failures. And there is an easy translation from the FSM model to the actual
implementation.

In all the examples about state in chapter 7 and in this section, the state is
contained within one actor. But what can we do when we need some state amongst
multiple actors? In the next section we are going to look at how we can do this
using agents.

The best way to deal with state is to use that state only within one actor, but this is
not always possible. Sometimes we need to use the same state within different
actors and as we mentioned before, using shared state needs some kind of locking.
And locking is hard to do correctly. For these situations, Akka has agents, which
eliminate the need for locking. An agent guards the shared state and allows
multiple threads to get the state and is responsible for updating it on behalf of the
various threads. And because the agent does the updating, the threads don't need to
know about locking. In this section we are going to describe how these agents are
able to guard the state and how we can them to share state. We start by addressing
the question what are agents then we show their basic usage. Afte that, we show
extra agent functionality to track state updates.

How can the state of the agent be retrieved by using synchronous calls while
updates to the state are done asynchronously? Akka accomplishes this by sending
actions to the agent for each operation, where the messaging infrastructure will
preclude a race condition (by assuring that only one send action is running in a
given ExectionContext, at a time). For our example, we need to share the number
of copies sold for each book, so we will create an Agent that contains this value.

 case StopEvent(FSM.Shutdown, state, data) // ...
 case StopEvent(FSM.Failure(cause), state, data) // ...
}

11.3 Implement Shared state using agents

11.3.1 Simple Shared state with agents

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

279

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The StateBookStatics is the state object and it contains a sequence number,
which can be used to check for changes and the actual book statistics. For each
book, a BookStatics instance is created which is put into a map using the title as
the key. In Figure 11.7 we show that getting this state from the agent we can use a
simple method call.

Figure 11.7 Updating and retrieving state using an agent

But when we need to update the number of books, we have to send the update
action to the agent. In the example, we show the first update is added with one and
the second action is to update the state with 3 copies. These Actions can be sent
from different Actors or threads, but are queued like messages sent to actors. And
just as messages sent to an Actor, the actions are executed one at the time, which
makes locking unnecessary.

To make this work there is one important rule: that all updates to the state are
done within the agent's execution context. This means that the state object

case class BookStatics(val nameBook: String, nrSold: Int)
case class StateBookStatics(val sequence: Long,
 books: Map[String, BookStatics])

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

280

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

contained by the agent must be immutable. In our example, we can't update the
content of the map. To be able to change it you need to send an Action to the
Agent to change the actual state. Let's see how we are doing this in the code.

We start by creating an Agent. When creating an Agent we have to supply the
initial state, in this case, an empty instance of StateBookStatics

When creating the agent we need to provide an implicit ExecutionContext
which is used by the agent. We use the global ExecutionContext defined by the
i m p o r t o f

. At thisscala.concurrent.ExecutionContext.Implicits.global

point, the Agent is guarding the state. As we mentioned earlier, the state of the
agent can be simply retrieved by using synchronous calls. There are two ways to
do that. The first is to call

Or, one could use the second method the "get" method, which is doing exactly
the same thing.

Both methods return the current state of the BookStatics. So far nothing special,
but updating the BookStatics can only be done by asynchronously sending actions
to the agent. To update the state, we use the send method of the agent; we send the
new state to the Agent.

But be very careful with sending a complete, new state; this is only correct
when the new state is independent of the previous state. In our case, the state
depends on the previous state because other threads may have added new numbers

import scala.concurrent.ExecutionContext.Implicits.global
import akka.agent.Agent

val stateAgent = new Agent(new StateBookStatics(0,Map()))

val currentBookStatics = stateAgent()

val currentBookStatics = stateAgent.get

val newState = StateBookStatics(1, Map(book -> bookStat))
stateAgent send newState

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

281

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

or even other books, before us. So we shouldn't use the method shown. To make
sure that when updating the state we end up with the correct state, we invoke a
function on the agent instead.

We use the same "send" method, but instead of the new state we send a
function. This function is translating the old state into the new state. The function
is updating the nrSold attribute with one and when there isn't already a BookStatics
present for the book a new object is created. The last step is to update the map.

Because the actions are executed one at any time, we don't need to worry that
during this function the state will be changed, and therefore, we don't need a
locking mechanism. We have seen how we can get the current state and how we
can update the state, this is the basic functionality of an agent. But because the
updates are asynchronous it is sometimes necessary to wait for the update to be
finished. This functionality is described in the next section.

In some cases, we need to update shared state and use the new state. For example,
we need to know which book is selling the most, and when a book becomes
popular, we want to notify the authors. To do this, we need to know when our
update has been processed before we can check whether the book is the most
popular. For this, Agents have the "alter" method, which can be used for updating
the state. It works exactly as the send method only it returns a Future, which can be
used to wait for the new state.

val book = "Akka in Action"
val nrSold = 1

stateAgent send(oldState => {
 val bookStat = oldState.books.get(book) match {
 case Some(bookState) =>
 bookState.copy(nrSold = bookState.nrSold + nrSold)
 case None => new BookStatics(book, nrSold)
 }
 oldState.copy(oldState.sequence+1,
 oldState.books + (book -> bookStat))
})

11.3.2 Waiting for the state update

implicit val timeout = Timeout(1000)
val future = stateAgent alter(oldState => {
 val bookStat = oldState.books.get(book) match {
 case Some(bookState) =>
 bookState.copy(nrSold = bookState.nrSold + nrSold)

Since we'll be
waiting, need a
timeout
Our agent will give
us a future to wait
on
This is where we

update the value
©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
http://www.manning-sandbox.com/forum.jspa?forumID=835

282

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

In this example, we performed the update using a function, but just as was the
case with the send method, it is also possible to use the new state within the alter
method. As you can see, the changed status is returned within the supplied Future.
But this doesn't mean that this is the last update. It is possible that there are still
pending changes for this state. We know that our change is processed and that the
result of this change is returned, but it is possible that there are multiple changes at
nearly the same time and we want the final state or another thread needs the final
state and only knows that the process before it may have updated the state. So this
thread doesn't have any reference from the alter method; it needs to wait. The
Agent provides us a "Future"for this. This future finishes when the pending state
changes are all processed.

This way, we can be sure of the latest state at this moment. In the next section,
we show that agents also can be used with monadic notation. This enables you to
create simple and powerful constructions. But keep in mind that new agents are
created when using monads, leaving the original agents untouched. They are called
'persistent' for this reason. An example with a map shows the creation of a new
Agent.

When using this notation, agent2 is a newly created Agent that contains the
value 4 and agent1 is just the same as before (it still contains the value 3).

We showed that when shared state was needed, we could use the Agents to
manage the state. The consistency of the state is guaranteed by allowing updates

 case None => new BookStatics(book, nrSold)
 }
 oldState.copy(oldState.sequence+1,
 oldState.books + (book -> bookStat))
})
val newState = Await.result(future, 1 second)

update the value

Our new state will
be returned here
when it's available

val future = stateAgent.future
val newState = Await.result(future, 1 second)

import scala.concurrent.ExecutionContext.Implicits.global
val agent1 = Agent(3)

val agent2 = agent1 map (_ + 1)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

283

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

only be done in the Agents context. These updates are triggered by sending actions
to the agent.

Clearly, writing applications that never hold state is an unattainable goal. In this
chapter, we saw several approaches to state management that Akka provides. The
key takeaways are:

FSMs, which can seem specialized and perhaps daunting, are pretty easy to implement
with Akka and the resulting code is clean and maintainable, their implementation as a
trait results in code where the actions are separated from the code that defines the
transitions
Agents provide another means of state that's especially useful when several Actors need
access.
Both techniques, FSMs and agents, allow us to employ some shared state without falling
back into having to manage locks.
Timers, in the FSMs, and the use of Futures with Agents, provide a level of orchestration
in implementing state changes.

This chapter took us through examples that showed the implementation of
complex, dependent interactions modifying shared state. We accomplished this
while still keeping the spirit of our stateless, messaging principles in tact, by using
mechanisms that allow us to coordinate multiple actors around a set of shared
states. Typically, when we make systems like these, we will want all actions to
succeed or all to fail. In other words we need transactions. In the next chapter, we
describe how we can use transactions within the Akka toolkit.

11.4 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

284

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

12
In this chapter

Transactions
ACID
Software Transactional Memory
Optimistic locking
Transactor's

In chapter 3, we described the "let it crash" philosophy and the supervisor
model for implementing it with Actors. This works well, but when an actor has to
execute several tasks to service one request, this can result in partially processed
requests. Let's take the classic example of transferring money from one account to
another. To do this, two actions have to be taken. The first is to withdraw the
amount form the first account and the second action is to deposit the amount in the
other account. When a failure occurs after the withdrawal has succeeded, but
before the deposit has finished, our "let it crash" aproach will not result in correctly
restored state. To solve this we need to make sure that both actions succeed or that
they both fails. Typically, transactions are used for such problems. The transaction
makes a group of actions act like one action. This is done by addressing assuring
the following properties:

atomic
This means that all the actions are successful or none of them. In our example, the
withdrawal and the deposit must fail. When one of the actions fails, the result of the all
prior actions must be reversed. (This is called a "rollback.")
consistent
After a transaction finishes, the system must be left in a consistent state. So when
transferring money, the sum of the amounts on both accounts should be the same before

Working with Transactions

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

285

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

and after the transaction.
isolated
Any changes done before the transaction has succeeded or failed must be invisible to
other users of the system who might be attempting to implement similar functionality.ß
durable
Durability means that the system cannot fail to honor the requirements of the transaction
because a fault, like a power outtage, occurred: it must be resilient.

These properties are often referenced by the acronym ACID. The primary goal
of a transaction is to keep the shared state consistent. We already discussed some
of these same issues earlier, and how Akka addresses them, but multiple state
transformations require additional capabilities.

Akka agents and actors can be used within transactional systems. To be able to
accomplish this, Akka uses Software Transactional Memory (STM). STM
implements the first three properties of a transaction (Atomic, Consistent, and
Isolated of ACID), but with better performance than traditional locking solutions.
We start this chapter by describing the basics of STM and how it achieves superior
performance. Once we know the basics, we describe how we can use the Akka
agents within STM transactions. And finally, we show two different approaches to
using STM transactions with actors. The first approach is to distribute the
transaction over multiple actors. The second approach is to use transactors. These
transactors are special actors which implement the use of the distributed
transaction for you so you need only implement the functionality. Let's get started
with the basics of STM.

To explain what the Software Transactional Memory model is, we need to forget
for a moment that we have Akka. In this section we want to share memory between
multiple threads. Let's go to our Kiosk example from chapter 1. We have an event
and we have a number of seats that multiple threads want to lay claim to. Our
shared data is a list of seats

For this example our seat has only a seat number. When we want to get a seat
from the list we need to get the first available seat and update the list.

12.1 Software Transactional Memory

case class Seat(seatNumber:Int)

val availableSeats: Seq[Seat])

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

286

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

But when we have multiple threads and they execute at the same time, those
threads might claim the first seat, if the second thread looks before the first has
updated the list. And when this happens, the seat is sold twice. We need some way
to prevent one seat from being sold multiple times.

We have seen already a solution in chapter 1, which is to use immutable
messages. But what can we do, when we can't or want to use immutable messages
and just want to protect the shared data from becoming inconsistent. In this section,
we describe how STM protects shared data, which is implemented differently than
the traditional locking mechanism (and also provides better performance). After we
describe how STM works, we will describe the common functionality of STM to
be able to create transactions.

The most common solution to protecting shared data is that when a thread wants to
access the shared data, we block all other threads from accessing the shared
structure. This is called locking. Here's a classic example: synchronized assures
only one thread at a time into the section of code that updates the reservedSeat
value:

Synchronization is the most common way to prevent others from entering 'the
critical section' while we are in process on our own changes. Before the
synchronized block is executed, the system has to obtain a lock. Figure 12.1 shows
how this is done. Thread 1 tries to read the list of seats and then update it, while
another competing thread is trying to do the same.

val head = availableSeats.head
availableSeats = availableSeats.tail

12.1.1 Protecting shared data

val reservedSeat = availableSeats.synchronized {
 head = availableSeats.head
 availableSeats = availableSeats.tail
 head
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

287

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 12.1 Locking shared data to keep data consistency

When another competing thread has a lock already, the current thread has to
wait until the lock is released. After the lock is obtained, the critical section can be
executed and when it's done, the lock is released. Thus, the critical section cannot
be entered by more than one thread at a time.

A problem with this is that when a thread only wants to read all available seats
it still has to lock the list too. All this locking decreases the performance of the
system. And most of the time, the locking is done even when there isn't any other
thread trying to access the shared data. This is called "pessimistic locking.” We
assume that we are going to access the shared data simultaneously. The word
"synchronized" gives you the impression that multiple threads need to synchronize
their actions to avoid problems, but as we stated, most of the time we don't have
the data update collisions.

Clearly, since there is 'pessimistic locking,' there must also be 'optimistic
locking.' As the name would imply, this approach assumes that there is no problem
with accessing the shared data, so we will just execute the code without any
locking. But before leaving the critical section, the system checks for possible
update collisions (this is shown in Figure 12.2). If there were no collisions, we
simply commit the transaction. When a collision is detected, the changes are
discarded (rolled back) and the critical section is retried.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

288

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 12.2 Optimistic Locking used by STM to keep data consistency

This is how STM works: by using optimistic locking. It prevents inconsistency
of the shared data caused by multiple threads accessing that data. The key to this
process is being able to know if the shared data was changed during the
transaction. To detect this, we will wrap all the shared data in an STM Ref class.

To get or set the value of the shared data we can simply write
. For example to update our availableSeats we can write:availableSeats()

The value of a Ref can only be accessed within an atomic block. An atomic
block defines a group of code to be executed as one atomic command. The check
in the Ref is used within an atomic block is checked at compile time by requiring
that an implicit InTxn value be available.

When we want to protect the seat list, we get the following (similar to the

import concurrent.stm.Ref

val availableSeats = Ref(Seq[Seat]())

availableSeats() = availableSeats().tail

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

289

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

synchronized example):

This code sample is functionally doing the same as the synchronized example
but the locking mechanism works completely differently. And because we use
"optimistic" locking there is a small but important difference: the critical section
will be executed only once when using synchronized, but using the STM atomic,
the critical section can be executed more than once. This is because at the end of
the block's execution, a check is done to see if there was a collision. Let's see this
collision check in action. We start by defining our shared data: a list of seats.

To demonstrate a data write collision we need multiple threads. In this example
we create a future which removes 10 seats with a waiting time of 50 milliseconds
between each one.

Now that we have a thread to update the shared list of seats, we start to create a
critical section which takes a lot longer to finish than the competing thread.
normally in our code, we wouldn't want to add a counter of any sort, but we'll do so
here with nrRuns to show you how many times the critical section is executed. We

import concurrent.stm._

val availableSeats = Ref(seats)

val reservedSeat = atomic {implicit txn => {
 val head = availableSeats().head
 availableSeats() = availableSeats().tail
 head
}}

Available seats
now points to last
item in
We get back the
item that was at
head

val seats = (for (i <- 0 until 15) yield Seat(i))
val availableSeats = Ref(seats)

implicit val ec = ExecutionContext.global
val f = Future {
 for (i <- 0 until 10) {
 atomic { implicit txn => {
 availableSeats() = availableSeats().tail
 }}
 Thread.sleep(50)
 }
}

Create transaction
to be able to
update the
availableSeats

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

290

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

have added a nrRuns to be able to count how many times the critical section is
executed.

The collision triggers the STM to rollback and retry the critical section. This
will continue until the competing thread has finished getting the first 10 seats (0 to
9) and doing this in 500ms. So we would expect that the critical section will
reserve seat number 10 (next available seat) after running 6 times, because the first
5 runs the competing thread updates the avaliableSeats before the main thread was
able to complete its transaction.

When running this test, we see that the nrRuns are indeed 6 and the seat number
is 10. This multiple execution of the critical section is the most important
difference for a developer when using "optimistic" locking instead of the
traditional "pessimistic" locking. In our example, we used a var nrRuns and
updated it in our atomic block. In normal code you should never do this, we did
this to show that it is updated multiple times. In normal code you don't want or
need to know how many times the section is executed only that the result is
committed once. So once again, you never update variables or classes which are
defined outside the atomic code block, because it is possible that it is updated more
than once.

We stated that the collision check was done at the end of the atomic block, but
for performance optimization, the check is done every time the reference is used.
Therefore it is also possible that the atomic block isn't executed completely, but
only the first half. When it detects a collision, the rollback is done immediately and
doesn't waste time with executing lines that are going to be rolled back anyway.
This is a second reason to not update classes or variables defined outside the

var nrRuns = 0
val mySeat = atomic { implicit txn => {
 nrRuns += 1
 val reservedSeat = availableSeats().head
 Thread.sleep(100)
 availableSeats() = availableSeats().tail
 reservedSeat
}}

Update the counter
we added to see
how many times
we have been
called

The delay allows
the competing
thread to update,
causing a collision.

Await.ready(f, 2 seconds)
nrRuns must be (6)
mySeat.seatNumber must be (10)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

291

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

atomic block, because you never know which part will be retried and which part
will be executed only once.

This is the basic functionality of STM. STM is able to implement the first part
of the ACID properties by using "optimistic" locking. The first three properties
Atomic, Consistent and Isolated are all addressed by STM. Only the last property
"Durable" doesn't apply to STM. This is because STM is all about in memory
transactions and in memory is never durable.

We have described the basic functionality of STM, but there is more. As we stated
the only way to reference the shared state is within an atomic block. But when we
want to do a simple read of shared data we need to create an atomic block and this
means writing a lot of code just for a single, simple read. When using only one
reference, you could also use the View of a reference. The Ref.View enables you
to execute one action on one Reference. By using the Ref.View, you improve the
performance and minimize the code. This view can be retrieved by using the
"single" method. This View supports several functions, which can be applied to the
shared data of the Ref. To get the value of the View we use the get method. To get
all current available seats we can write the following:

This code doesn't need to be in an atomic block. This View can also be used to
update the value and has several methods to do that. These View updates can be
used instead of an atomic block when an the atomic block only accesses one single
Ref. And it might be more concise and more efficient to use a Ref.View in those
situations. In our example we use only one Ref (the availableSeats), so to improve
performance it was better to use the Ref.View. But to be able to show how STM
works, we used atomic instead of the Ref.View. Here's what the code looks like
when rewritten to use the View:

12.1.2 Using the STM transactions

availableSeats.single.get

val mySeat = atomic {implicit txn => {
 val head = availableSeats().head
 availableSeats() = availableSeats().tail
 head
 }}
 }

Using the atomic
block

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

292

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Using the Ref.View method makes the code a little bit more compact and also
makes the critical section smaller, which decreases the chance of a collision,
improving the total performance of the system.

Now we know how we can read and update shared data, but what about when
we run into trouble? For example, we didn't check if the available seats is empty.
What happens when there is an exception within an atomic block? The code will
do what you expect: it will roll back all changes before handling it. In listing 12.1
we show that the exception causes the atomic block to rollback. We do this by
modifying our example to attempt to get two seats when there is only one left.

Listing 12.1 Example of Rollback when an exception occurs

As you see, the exception caused the transaction to be rolled back and the list is
unchanged. But it is also possible to check conditions and indicate that the code
reached a dead end. For example, when you have a pool of resources (e.g. database
connections), and in the atomic block you need one, but all of them are in use, you
end up at a dead end, until one of the other threads releases a connection. For cases
like this, you can use the retry method inside the atomic block.

val myseat = availableSeats.single.getAndTransform(_.tail).head
Using the Ref.View

val availableSeats = Ref(Seq(Seat(1)))
evaluating {
 val mySeat = atomic { implicit txn => {
 var reservedSeats = Seq[Seat]()
 reservedSeats = reservedSeats :+ availableSeats().head
 availableSeats() = availableSeats().tail
 Thread.sleep(100)
 reservedSeats = reservedSeats :+ availableSeats().head
 availableSeats() = availableSeats().tail
 reservedSeats
 }}
} must produce [Exception]
availableSeats.single.get.size must be (1)

Generate the
exception

List is still
containing one
seat

val pool = Ref(connectionPool)
actomic { implicit txn => {
 if(pool().size == 0)
 retry
 ...
}}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

293

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

When you call retry all the changes are rolled back and the critical section is
retried, even when all the references are unchanged. But does this mean it retries to
execute the critical section over and over again until the conditions are changed?
No, STM keeps track which references are used and only when one of them has
been changed, the next retry is executed. Internally the retry is implemented using
blocking constructs, so there is no busy-waiting when a retry is called. So it has a
better performance than when you try to solve this within the atomic block.

The last functionality of STM we want to describe here are alternative atomic
blocks. For example when all the seats have been sold, we can wait all we want, a
seat will never become available. For this, we can create an alternative atomic
block. This is done with the orAtomic method. When we take our seat example it
would look like listing 12.2.

Listing 12.2 Using alternative atomic block to implement a stop criteria

When the availableSeat list is empty, we call the retry, which triggers to
execute the alternative atomic block. In this block we do nothing but return a None
to indicate we were unable to get a seat.

The alternative block isn't limited by one. You can use as many blocks you
need. These alternative blocks can be chained to implement the alternative
solutions to the problem. If the first alternative calls retry then the second will be
tried, if the second calls retry then the third will be tried, and so on. Keep in mind
that the alternative block is only tried when a retry is called, not when the
transactions reads are inconsistent.

We have shown how we can create shared data and that we only reference them
within an atomic block, or when we can use the Ref.View. This option gives us

val availableSeats = Ref(Seq[Seat]())
val mySeat = atomic { implicit txn => {
 val allSeats = availableSeats()
 if (allSeats.isEmpty)
 retry
 val reservedSeat = allSeats.head
 availableSeats() = allSeats.tail
 Some(reservedSeat)
}}.orAtomic {implicit txn => {
 //else give up and do nothing
 None
}}
mySeat must be (None)

Call retry when list
is empty

Define an
alternative section
give up and return
None

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

294

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

better performance, but can only be used when we have one reference within an
atomic block. Optimistic locking outperforms locking because when there was no
collision, we paid no price, and even when there was, the price paid was slight: a
retry. That retry mechanism can also prove useful when we additional reasons to
execute the critical section again.

There is more to STM, but we have covered the most common functionality.
The only disadvantage might be that you need to consider that the atomic block can
be executed more than once and that all the shared data needs to be wrapped into
STM references, but the way to look at this is it's consistent with the one of the
most important tenets of Akka's thinking: you must prepare for failures.

Now that we know how STM works we can go back to how Akka makes it
possible to implement STM.

Let's look at how we can take the Akka Agent from section 10.3 and have it
participate within a transaction. We make a distinction between reading and
updating the shared data. This is to provide additional clarity with regards to how
the Agent behaves within the transaction, because it might not work as you expect
at first sight. We start with reading within a transaction.

When an Agent is used within a transaction, it isn't necessary to wrap it with an
STM reference to be able to use its data. Let's look again at the seat example from
the previous section, but we will make a small change because we don't want to do
the update in the transaction (yet).

12.2 Agents within transactions

12.2.1 Reading from Agents within a transaction

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

295

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 12.3 Example reading an Agent's state within a transaction

Our competing thread will update the agent every 50 ms and our test thread
tries to read the Agent's state twice within a transaction. When the Agent's state has
changed in the meantime, the transaction has to be retried. This happens as long as
the competing thread is updating the agent. So when we rewrite our seat example
using an agent we get listing 12.3.

Listing 12.3 Competing thread updating the agent

We create an Agent with a list of available seats and a competing thread which
updates the list by removing 10 seats from it. This will cause the example
transaction to retry. In our example transaction shown in listing 12.4 we do two

val seats = (for (i <- 0 until 15) yield Seat(i))
val availableSeats = Agent(seats)
val future = Future {
 for (i <- 0 until 10) {
 availableSeats send (_.tail)
 }
 Thread.sleep(50)
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

296

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

reads of the agent to detecting the change of the shared data while waiting for
100ms to simulate doing some processing on the data.

Listing 12.4 Reading an agents content withing an atomic block

Do the first read of the agent
Simulate some processing with the availableSeat list
Trigger the check if the availableSeat list has changed

In this example we see that the critical section is executed more than once,
because the value of the agent has changed during the transaction. And the first
available seat, which is returned is the expected seat with number 10. So far the
Agent behaves just as the STM reference version does, but the difference is in the
update.

In chapter 10.3 we saw that updating the state of an Agent is done by sending
actions to it. We did that also in the previous example using the competing thread.
But when we use agents within a transaction, the update of an Agent is done
differently than we might expect. The actual update isn't done within the
transaction, but by sending the action as part of the transaction. This means that
when we send an action, the action is held until the transaction is committed and
when if the transaction is rolled back, the action sent to the Agent is also rolled
back. Let's look at an example that demonstrates this.

var nrRuns = 0
val firstSeat = atomic { implicit txn => {
 nrRuns += 1

 val currentList = availableSeats.get

 Thread.sleep(100)

 availableSeats.get.head
}}
Await.ready(future, 1 second)
nrRuns must be > (1)
firstSeat.seatNumber must be (10)

12.2.2 Updating Agents within a transaction

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

297

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 12.4 Example of sending an Agent update within a transaction

In example 12.4 we use two counters. One to trigger the retry of the transaction
and the other to count the number of agent updates. The counter "numberUpdates"
is using an agent. Another counter is implemented by using an STM reference.
This counter is used to trigger the data write collision. When we implement this
test example we get the Listing 12.5

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

298

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 12.5 Update an agent within a transaction

As you can see the atomic block is executed more than once but the agent is
only updated once. This is because the update action is only sent when the
transaction commits and that is only once. A common mistake is that the actual
update is also done within the transaction. This is even implied when looking at the
Agent example given in the Akka documentation in versions lower than 2.2. In
listing Listing 12.6 we have copied the example from the Akka documentation. We
show a different example, quickly, to illustrate this, one that is something of a hello
world of the transaction realm: the transfer of money from one account to another.

val numberUpdates = Agent(0)
val count = Ref(5)
Future {
 for (i <- 0 until 10) {
 atomic { implicit txn => {
 count() = count() +1
 }}
 Thread.sleep(50)
 }
}
var nrRuns = 0
val myNumber = atomic { implicit txn => {
 nrRuns += 1
 numberUpdates send (_ + 1)
 val value = count()
 Thread.sleep(100)
 count()
}}
nrRuns must be > (1)
myNumber must be (15)
Await.ready(numberUpdates.future(), 1 second)
numberUpdates.get() must be (1)

Send the update to
the agent

Trigger the retry of
the atomic block

The agent is only
one time updated

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

299

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 12.6 Copy of the agent example used in the Akka documentation

When looking at this example. It seems that it is never possible to overdraw the
from balance. But as we have learned here, this isn't the case, because the actual
withdrawal is done when the transaction is committed. And another thread is able
to send an update action during the time period of the balance check and the final
commit of the transaction. Actually it is possible that multiple update actions are
already waiting to be processed when calling the get method. So this isn't the way
to protect the Agent from overdraft. Actually the STM transaction with an Agent
isn't able to solve this problem, because the actual update is done in another thread.
For this we need to coordinate multiple atomic blocks within different threads.
This is what Coordinated transactions and transactors can do and it is described in
the next section.

In the previous section we saw that we can use Agents within a STM transaction.
In this section, we show how we can integrate Actors with the transactions. In
Akka there are two approaches that accomplish this. The first is to distribute the
transaction over multiple actors, using a 'coordinated' transaction. The other
approach is to use transactors. These are Actors implementing a general pattern for
coordinating transactions, which can be used in most cases. We start this section
explaining the Coordinated transactions using the example of a transfer of money
between accounts. In the second part, we show the same example, but using
transactor's instead of a coordinated transaction.

def transfer(from: Agent[Int], to: Agent[Int], amount: Int): Boolean = {
 atomic { txn
 if (from.get < amount) false
 else {
 from send (_ - amount)
 to send (_ + amount)
 true
 }
 }
}

12.3 Actors within transactions

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

300

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

As we explained in the previous section, we can't use Agents and transactions to
solve the problem of transferring money. The problem is that the two actors are
completely unrelated, but we need them to coordinate the there actions. Let's look
at Figure 12.5

Figure 12.5 Transfer an amount from one account to another.

When transferring money, we need to withdraw from one account and deposit
that amount into the other. But if one action fails, for whatever reason, we need all
steps to be canceled; we want the transaction to be committed only when all steps
have succeeded. To be able to do that with Akka we need "Coordinated
Transactions." The idea is to create an Atomic transaction and distribute it over
multiple actors. All actors will start and finish the transaction at the same time,
because it is like one big atomic block.

12.3.1 Coordinated transactions

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

301

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 12.6 Coordinated transaction

In Figure 12.6 the transfer actor creates the transaction and distributes it to the
two account actors. The actual update action of the account is done within this
distributed transaction. Each atomic block will only commit its changes when all
other atomic blocks also succeeded, and if one fails, the whole transaction fails.
This is what is need to implement the transfer example: once we take money from
one party, we must be certain it went to the other party. To enable this required
coordination, we need to create a Coordinated transaction, which also requires a
timeout. This can be defined implicitly when creating the Coordinated class.

To distribute the transaction we need to send it to the Actors with our message.
By sending the coordinated transaction to an Actor, the actor is automatically
included in the transaction.

import akka.transactor.Coordinated
import scala.concurrent.duration._
import akka.util.Timeout

implicit val timeout = Timeout(5 seconds)
val transaction = Coordinated()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

302

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

When we implement the actor that represents an account, we need to handle the
Coordinated message just like other normal messages. But when processing a
deposit or withdrawal, we need to do these requests within a transaction. In listing
12.7 we have created an actor which keeps the balance of an account.

Listing 12.7 Account Actor using coordinated transactions

Balance must be wrapped by the STM Ref
Match the withdraw message with a Coordinated transaction

USING COORDINATED TRANSACTION IN THE ACCOUNT ACTOR

case class Withdraw(amount:Int)
case class Deposit(amount:Int)
object GetBalance

class InsufficientFunds(msg:String) extends Exception(msg)

class Account() extends Actor {

 val balance = Ref(0)
 def receive = {

 case coordinated @ Coordinated(Withdraw(amount)) {

 coordinated atomic { implicit t
 val currentBalance = balance()
 if (currentBalance < amount) {
 throw new InsufficientFunds(
 "Balance is too low: "+ currentBalance)
 }

 balance() = currentBalance - amount
 }
 }

 case coordinated @ Coordinated(Deposit(amount)) {
 coordinated atomic { implicit t
 balance() = balance() + amount
 }
 }

 case GetBalance => sender ! balance.single.get
 }

 override def preRestart(reason: Throwable, message: Option[Any]) {
 self ! Coordinated(
 Deposit(balance.single.get))(Timeout(5 seconds))
 super.preRestart(reason, message)
 }

}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

303

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Start the distributed atomic block
Update the balance within the atomic block
Match the deposit message with a Coordinated transaction
Get the balance which isn't in a distributed transaction

The balance is an STM reference, because we want the read and writes part of
the transaction. And we have learned in section 12.1.1 when we reference variables
within an atomic block, we need to wrap it with an STM reference. In the receive
function, we match the expected messages, which is a Coordinated class containing
our messages. Processing the messages we need to start the transaction. This is
done with the following lines

Within the transaction we check if the balance is sufficient to withdraw the
requested amount. When there isn't enough money on the account we throw an
InsufficientFunds exception. This causes the transaction to fail and it also restarts
the actor. We don't want to lose the current balance after a restart so we send the
balance to self when restarting.

Our account is finished and can be used within a coordinated transaction. In
Listing 12.8 we start with a deposit on our first account.

Listing 12.8 Sending Coordinated transaction to an Actor

In this example we do a deposit within a transaction. But this isn't much of a
transaction sending one message. This is because sending one message is already
atomic. We want to start a transaction by sending the Coordinated message, but
without becoming a participant in the transaction. This can also be done differently

coordinated atomic { implicit t
 ...
}

val account1 = system.actorOf(Props[Account])
implicit val timeout = new Timeout(1 second)

val transaction = Coordinated()
transaction atomic { implicit t =>
 account1 ! transaction(Deposit(amount = 100))
}

val probe = TestProbe()
probe.send(account1, GetBalance)
probe.expectMsg(100)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

304

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

and with less code. Normally we use the following to send a coordinated message
without participating in the created transaction (this makes the code more
readable).

Another difference is that because we are not part of the transaction our thread
can proceed without waiting for the transaction to complete, so it also improves the
performance of the calling thread or actor.

Now that we can create Coordinated messages, we are able to distribute the
Coordinated transaction. Let's make a Transfer Actor shown in Figure 12.7.

Figure 12.7 Transfer an amount from one
account to another.

This transfer actor, shown in listing 12.9, will receive the requests to transfer an
amount from one account to another. And at the end of each transfer it returns if
the request has succeeded or failed.

val account1 = system.actorOf(Props[Account])
implicit val timeout = new Timeout(1 second)

account1 ! Coordinated(Deposit(amount = 100))

val probe = TestProbe()
probe.send(account1, GetBalance)
probe.expectMsg(100)

CREATING THE COORDINATED TRANSACTION IN THE TRANSFER ACTOR

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

305

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 12.9 Implementation of the Transfer actor creating the Coordinated
transaction

This transfer Actor is just a normal actor which creates a coordinated
transaction to be able to transfer money in a consistent way. When there is a
sufficient amount in account1, we get the expected result

And when the balance of account1 is insufficient (25), we get the expected
failure message and both accounts are unchanged, just as we expect.

case class TransferTransaction(amount:Int,
 from: ActorRef,
 to: ActorRef)

class Transfer() extends Actor {
 implicit val timeout = new Timeout(1 second)

 override def preRestart(reason: Throwable, message: Option[Any]) {
 message.foreach(_ => sender ! "Failed")
 super.preRestart(reason, message)
 }

 def receive = {
 case TransferTransaction(amount, from, to) => {
 val transaction = Coordinated()
 transaction atomic { implicit t
 from ! transaction(Withdraw(amount))
 to ! transaction(Deposit(amount))
 }
 sender ! "done"
 }
 }
}

Send failure
message

Create a
transaction

Send Success
message

transfer ! TransferTransaction(amount = 50,
 from = account1,
 to = account2))
expectMsg("done")

transfer ! TransferTransaction(amount = 50,
 from = account1,
 to = account2))
expectMsg("Failed")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

306

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

As you can see, we need to deal with the Coordinated transaction in different
places in the code. And most of the time, we create a similar structure dealing with
Coordinated transactions. To improve upon this DRY (don't repeat yourself)
violation, Transactors were created.

Transactors are actors that are capable of dealing with messages that comprise
Coordinated transactions. A transactor has several methods which we can use to
implement the wanted functionality, without exposing the Coordinated class. This
way we can deal with the functionality of the transactions and not worry about
Coordinated transactions. To show how we can use transactors, we are going to
implement the same transfer example as in the previous section using Coordinated
transactors. All the functional code will been seen again in the example, only the
Coordinated part is removed, because the transactor will hide it from our code.

We start by transforming the Account Actor into a Transactor, by extending the
Transactor instead of Actor:

In the transactor, we don't need to implement the receive method, but there is a
method named atomically which is the transaction part of the transactor. In this
method, we need to implement our withdrawal and deposit functionality.

probe.send(account1, GetBalance)
probe.expectMsg(25)
probe.send(account2, GetBalance)
probe.expectMsg(0)

12.3.2 Creating transactors

import akka.transactor.Transactor

class AccountTransactor() extends Transactor {
 val balance = Ref(0)

 ...
}

def atomically = implicit txn => {
 case Withdraw(amount) => {
 val currentBalance = balance()
 if (currentBalance < amount) {
 throw new InsufficientFunds(
 "Balance is too low: "+ currentBalance)
 }
 balance() = currentBalance - amount
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

307

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

All this code is executed in the Coordinated transaction, but all the coordination
boilerplate code is hidden. Our previous example had the message GetBalance
which wasn't part of a transaction. This can be implemented by overriding the
normally method.

This is also a partial function just as receive. All messages which are
implemented in the normally function, will not be passed to the atomically
function. In this method you can implement normal actor behavior, or use the
normal STM atomic for local transactions. Because a transactor is an Actor we can
also override the preRestart method, so we can reuse this part. And our first
transactor is done and the complete listing is shown in Figure 12.8.

Figure 12.8 Account Actor rewritten as a transactor

The transactor now has the same functionality as the Account Actor 12.7 and its

 case Deposit(amount) => {
 balance() = balance() + amount
 }
}

override def normally = {
 case GetBalance => sender ! balance.single.get
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

308

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

behavior is the same. This transactor can now be used in a transaction just like a
coordinated Actor.

Because it is a transactor, it is also possible to send just the transfer message.
When a transactor receives a message without a coordinated transaction, it makes a
new transaction and processes the message. For example, when we deposit some
money in an account it doesn't need to be done in a Coordinated transaction. We
already saw that we can send a coordinated message without joining the
transaction, but when using a transactor, we can also send just the message.

These two lines of code are equivalent when using a transactor. Next, we are
going to implement the Transfer Actor as an transactor, because this actor needs
more functionality than the account example showed. The AccountTransactor only
acts within a transaction, but it doesn't include other actors within its transaction.
When the transfer Actor starts a coordinated transaction we need to include both
accounts in the transaction. For this, a transaction has the coordinated method.
Here we define which actors need to be in the transaction and which messages
need to be sent. This is done with the sendTo method.

In our case we need to send two messages to two actors. The Withdraw
message to the "from" actor and the deposit to the "to" actor. This is all we need to

val account1 = system.actorOf(Props[AccountTransactor])
val account2 = system.actorOf(Props[AccountTransactor])

val transaction = Coordinated()
transaction atomic { implicit t
 account1 ! transaction(Withdraw(amount = 50))
 account2 ! transaction(Deposit(amount = 50))
}

account1 ! Coordinated(Deposit(amount = 100))

account1 ! Deposit(amount = 100)

override def coordinate = {
 case TransferTransaction(amount, from, to) =>
 sendTo(from -> Withdraw(amount),
 to -> Deposit(amount))
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

309

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

do to include the two actors into the transactor. When you want to send the
received message to the other actors, you can also use the include method:

The above code sends the received Message to the three actors. We can include
other actors within our transactor now, but we don't have the same functionality
yet. We need to send a message when we are done. For these kind of actions, a
transactor has two methods which can be overridden, the before and after method.
These methods are called just before and after the atomically method and are also
partial functions. For our example, we don't need the before method, but using the
after to be able to send the "done" message when the transaction has successfully
ended.

Now we can put all the parts together and create our TransferTransactor as
shown in Figure 12.9

Figure 12.9 Transfer Actor rewritten as a transactor

override def coordinate = {
 case msg:Message => include(actor1, actor2, actor3)
}

override def after = {
 case TransferTransaction(amount, from, to) => sender ! "done"
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

310

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Again we have rewritten the actor into a transactor and didn't need to deal with
the Coordinated transaction. This transactor behaves almost the same as our
Coordinated transaction version. There is one difference. This transactor can also
join an existing transaction and the Coordinated version always creates its own
transaction and isn't able to join an existing transaction. It is possible but in that
case, we need to implement it.

In this section, we have seen how we can create and use transactions that
involve multiple actors. We started with coordinated transactions, which can define
transactions. But Akka has also transactors which are a general structure for using
actors with transactions. Using these transactors will hide the use of coordinated
transactions and reduces the amount of code. The transactors have support for
adding other actors in the transaction and it is possible to implement normal
behavior in combination with the transaction, by overriding the before and after
methods or use the normally method to skip the transaction completely.

For a lot of professional programmers, one of the hardest things to imagine about
leaving behind traditional state-based frameworks in favor of stateless, is the idea
of going without transactions. This chapter has shown that Akka's statelessness
does not mean no transactions, but rather transactions are simply implemented
differently, and the guarantees they offer are available, but they are simply
obtained by other means.

The implementation exercises also illustrated the fact that transactions in Akka
do involve a few new elements, but by and large, they are accomplished using all
the programming techniques we have been learning throughout the book.

The takeaways, as we go forward into making complete solutions, are:

Using STM, we can achieve the familiar transaction behaviors of commits and rollbacks
While optimistic locking takes a different approach than the more common pessimistic
variant, we can still guarantee atomicity with it
We can implement Transactions that involve multiple parties by doing Coordinated
Transactions where each participant is drawn in by a coordinator and the results are
orchestrated by the coordinator
Finally, Coordinated Transactions can be unburdened of the coordination boilerplate (and
the resulting code made more readable) by using Transactors

In the next chapter, we are going to take the many approaches we have shown
throughout the book and use them to create a case study. This will be the 'pulling it
all together' part of the book.

12.4 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

311

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

13
In this chapter

Camel
Endpoints
Rest
Spray
Play-mini
Consumer/producer

In this chapter, we are going to look at some examples of actors being used to
integrate to other external systems. Applications today are more and more
complex, requiring connections to different information services and applications.
It is almost impossible to create a system that doesn't either rely on or supply
information to other systems. To be able to communicate with other systems, the
two sides have to go through an agreed upon interface. We start with some
Enterprise Integration patterns. Next we describe how the Camel extension (Camel
is an Apache Project for doing integration) can help in integrating a system with
other external systems. We finish with some REST examples, and detail the
different approaches to implementing integration with Akka.

Integration

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

312

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

In the previous chapter, we showed how to build systems using various enterprise
patterns. In this section, we describe the patterns that apply when different systems
need to exchange information. Consider a system that needs customer data from a
customer relations application, yet you don't want to manage this data in multiple
applications. The implementation of an interface between two systems isn't always
easy, because the interface contains two areas: the transport layer and the data
which is sent over this transport layer. Both areas have to be addressed to integrate
the systems. There are also patterns to help us to design the integration between
multiple systems. For example, we are creating an order system for use in a book
stockroom, that processes orders from all kinds of customers. These customers can
order the books by visiting the store. The bookstore already uses an application to
sell and order books. So the new system needs to exchange data with this existing
application. This can only be done if both systems agree on which messages are
sent and how they are sent. Because you probably can't change the external
application, you have to create a component that can send and/or receive messages
from the existing application. This component is called an endpoint. Endpoints are
part of your system and are the glue between the external system and the rest of
your system, which is shown in Figure 13.1.

Figure 13.1 Endpoint as glue between order system and book shop application

The endpoint has the responsibility of encapsulating the interface between the
two systems in such a way that the application itself doesn't need to know how the
request is received. This is done by making the transport pluggable and using a
canonical data format. There are a lot of different transport protocols to potentially
support: REST/HTTP, TCP, MQueues, or simple files. And after receiving the
message, the endpoint has to translate the message into a message format that is

13.1 Message endpoints

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

313

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

supported by our order system. By translating the message, the rest of the system
doesn't know that the order was received from an external system. In this example,
the endpoint receives a request from the external system and sends a response
back. This is called a consumer endpoint because it consumes the request. It is also
possible that our system needs some data from another system for example the
customer details, which are kept in the customer relation application.

Figure 13.2 Endpoint as glue between order system and customer relation application

In Figure 13.2 the order system is initiating the communication between
systems, and because the endpoint produced a message, which is sent to the
external system, this is called a producer endpoint. Both usages of the endpoints
are hiding the details of the communication from the rest of the system and when
the interface between the two systems change, only the endpoint needs to be
changed. There are a few patterns in the Enterprise Integration Pattern catalog that
apply for such endpoints. The first pattern we are going to describe is the
Normalizer pattern.

We have seen that our order system receives the orders from the bookshop
application, but it is possible that our system also receives orders from a web shop,
or by customers sending email. We can use the Normalizer pattern to make these
different sources all feed into a single interface on the application side. The pattern
translates the different external messages to a common, canonical message. This
way all the message processing can be reused, without the knowledge that different
systems are sending these messages.

We create three different endpoints to consume the different messages, but
translate them into the same message, which is sent to the rest of the system. In
Figure 13.3 we have the three endpoints, which handle the details on how to get the

13.1.1 Normalizer

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

314

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

needed information and translate it into the common message format the order
system expects.

Figure 13.3 Multiple Endpoint example

Translating the different messages into a common message is called the
Normalizer pattern. This pattern combines router and translator patterns into an
endpoint. This implementation of the Normalizer pattern is the most common one.
But when connecting to multiple systems using different transport protocols and
different messages, it is desirable to reuse the translators of the messages; this
makes the pattern implementation a little bit more complex. Let us assume that
there is another bookshop that is connecting to this system using the same
messages but using MQueue to send those message. In cases of more complex
implementations such as this, the Normalizer pattern can be divided into three
parts. Figure 13.4 shows the three part. The first is the implementation of the
protocol, next a router decides which translator has to be used. And finally the
actual translation takes place.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

315

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 13.4 Normalizer pattern divided into three parts

To be able to route the message to the correct translator requires the ability to
detect the type of the incoming message. How this has to be done differs greatly
and depends on the external systems and types of messages. In our example, we
support three types of messages: plain text, JSON and XML, which can be
received from any of three transport layer types: Email, REST and MQueue. In
most cases, the simplest implementation would make the most sense: the endpoint
and translation (and no router) implemented as a single component. In our
example, it is possible to skip the router for the Email and MQueue protocol and
go directly to the correct translator, because we are receiving only one type of
message. This is a trade-off between flexibility and complexity: when using the
router, it is possible to receive all types of messages on all protocols without any
extra effort, but we have more components. Only the router needs to know how to
distinguish between all the message types. Tracing the messages can be more
difficult, which can make this solution more complex, and most of the time, you
don't need this flexibility, because only one type of system is being integrated
(supporting only one message type).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

316

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The Normalizer pattern works well when connecting one system to another
external system. But when the connectivity requirements between the systems
increases we need more and more endpoints. Let's go back to our example. We
have two back office systems, the order system and the customer relations system.
In the previous examples, the shops were only connected to the order system, but
when they also needed to communicate with the customer relations system, the
implementation becomes more complex, as shown in figure 13.5.

Figure 13.5 Connectivity diagram between systems

At this point, it isn't important which system is implementing the endpoints, the
problem is that when it is necessary to add a new system to integrate to, we need to
add more and more Endpoints: one for the shop applications, and two endpoints to
integrate the existing back office systems. Over time, increasing exponentially, the
number of endpoints will explode.

To solve this problem, we can use the Canonical Data Model. This pattern
connects multiple applications using interface(s) that are independent of any
specific system. Then each system we wish to integrate with will have to have
incoming and outgoing messages converted to the canonical form for the given
endpoint.

13.1.2 Canonical Data Model

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

317

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 13.6 Use a common interface between systems

This way, every system has an endpoint which implements a common interface
and uses common messages. Figure 13.6 shows when the Bookshop application
wants to send a message to the order system, the message is first translated to the
canonical format and then it is sent using the common transport layer. The
endpoint of the Order system receives the Common message which translates it to
an Order System message. This looks like an unnecessary translation, but when
applying this to a number of systems the benefit is clear, see Figure 13.7

Figure 13.7 Canonical pattern using to connect multiple systems

As you can see every System or application has one endpoint. And when the
Web shop needs to send a message to the Order System it uses the same endpoint

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

318

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

1.
2.
3.

as when sending it to the customer relations system. When we add a new system to
be integrated, we need only one endpoint instead of the four shown in Figure 13.5.
This reduces the number of endpoints greatly when there are a large number of
integrated systems.

The Normalizer pattern and the Canonical Data Model are quite helpful when
integrating a system with other external systems or applications. The Normalizer
pattern is used to connect several similar clients to another system. But when the
number of integrated systems increases, we need the Canonical Data Model, which
looks like the Normalizer Pattern, because it also uses normalized messages. The
difference is that the Canonical Data Model provides an additional level of
indirection between the application's individual data formats and those used by the
remote systems. While the Normalizer is only within one application. And the
benefit of this additional level of indirection is that, when adding a new application
to the system, only the translator into these common messages has to be created, no
changes to the existing system are required.

Now that we know how we can use endpoints, the next step is to implement
them. When implementing an endpoint we need to address the transport layer and
the message. Implementing the transport layer can be hard, but most of the time the
implementation is application independent. Wouldn't it be nice if someone already
implemented the transport layers? In fact, this is what the Camel Framework
provides. Let's see how Camel can help us with implementing an endpoint.

Camel is an apache framework whose goal is to make integration easier and more
accessible. It makes it possible to implement the standard enterprise integration
patterns in a few lines of code. This is achieved by addressing three areas:

Concrete implementations of the widely used Enterprise Integration Patterns
Connectivity to a great variety of transports and APIs
Easy to use Domain Specific Languages (DSLs) to wire EIPs and transports together

The support of a great variety of transport layers is the reason why we would
want to use Camel with Akka. Because this will enable us to implement different
transport layers without much effort. In this section, we explain some of what
Camel is and how to send and receive messages using the Camel Consumer and
Producer.

The Akka Camel module will allow you to use Camel within Akka. And it

13.2 Implementing endpoints using the Camel Framework

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

319

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

enables you to use all the transport protocols and API's implemented in Camel. A
few examples of protocols supported are HTTP, SOAP, TCP, FTP, SMTP or JMS.
At the moment, approximately 80 protocols and APIs are supported.

To use the module extension is every easy. Just add akka-Camel to the project
dependencies and you can use the Camel Consumer and/or Producer classes to
create an Endpoint. Using these classes will hide the implementation of the
transport layer. The only functionality you have to implement is the translations
between your system messages and the interface messages.

Because the transport layer implementations are completely hidden, it is
possible to decide which protocol to use at runtime. This is the next great strength
of using the Camel extensions. As long as the message structure is the same, no
code changes have to be made. So when testing we could write all the messages to
the file system, because we don't have the correct external system available in the
test environment, and as soon as the system is in the acceptance environment, we
can change the used Camel protocol into a REST interface for example, with only
one configuration setting.

The Camel module works internally with Camel classes. Important Camel
classes are the camel context and the ProducerTemplate. The CamelContext
represents a single Camel routing rule base, and the ProducerTemplate is needed
when producing messages. But for more details, look at the Camel documentation.
The Camel module hides the uses of these camel classes, but some times one needs
them when more control of how messages are received or produced is required.
The Camel Module creates a Camel extension for each Akka system. Because
several underwater actors are created and need to be started in the correct
ActorSystem. To get a systems CamelExtension, one can use the CamelExtension
object.

When a specific Camel class is needed, like the context or the
ProducerTemplate, this extension can be used. We will see in the next sections
some examples. We start with a simple consumer example that reads files and
changes them using other protocols like TCP connections and ActiveMQ. We end
this section by creating a Producer that can send messages to the created
Consumer. So let us begin by using Camel in creating a consumer.

val camelExtension = CamelExtension(system)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

320

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The example we are going to implement is an Order System receiving messages
from a bookshop. Of course, this order system must be able to receive messages
from different books stores. Let's say the received messages are XML files in a
directory. The transport layer is in this case the file system. The endpoint of the
order system needs to track new files and when there is a new file it has to parse
the XML content and create a message the system can process. Before we start
implementing our endpoint consumer we need to have our messages shown in
Figure 13.8.

Figure 13.8 Messages received and sent by our endpoint

The first message to look at is the XML sent by the Bookshop application to
our endpoint indicating that "customer 1" wants 20 copies of "Akka in Action".
The second message is the class definition of the message the order system can
process.

Now that we have our messages we can start implementing our consumer endpoint.
We start by extending our Actor class with the camel Consumer trait instead of the
normal Akka Actor class.

The next step is to set the transport protocol, this is done by overriding the
endpoint Uri. This Uri is used by the Camel framework to define the transport
protocol and its properties. In our case we want to be able to change this URI, so
we are going to add the URI to our constructor. And of course we need to
implement the receive method, because it is also an Akka actor. Figure 13.9 shows
the implementation of the Consumer.

13.2.1 Implement a consumer endpoint receiving messages from an
external System

IMPLEMENTING A CAMEL CONSUMER

class OrderConsumerXml() extends akka.camel.Consumer { }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

321

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 13.9 OrderConsumerXml, the implementation of the consumer endpoint

When a new message is received, it comes to the Actor through its usual
method, as a CamelMessage. A CamelMessage contains a body, which is the
actual message received, and a map of headers. The content of these headers
depends on the protocol used. In the examples in this section, we don't use these
headers, but we use them in the Camel REST example later in section 13.3.1.

When a CamelMessage is received we convert the body to a string and parse
the XML into an Order message and send it to the next actor that is available to
process the Order.

We have implemented the translation from the XML to the Order object, but
how do we pickup these files? This is all done by the Camel framework. All we
have to do is to set the Uri. To tell Camel we want it to pickup files, we use the
following Uri

This Uri starts with the Camel component. In this case we want the file
component. The second part depends on the component chosen. When using the
file component the second part is the directory where the message files are placed.
So we are expecting our files in the directory "messages". All the possible
components can be found at http://camel.apache.org/components.html. The
possible options are also described at this site.

So let's start creating the consumer so we can see how that works.

val camelUri = "file:messages"

val probe = TestProbe()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

322

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://camel.apache.org/components.html
http://www.manning-sandbox.com/forum.jspa?forumID=835

Because we use the Camel Consumer trait, a lot of components are started and
we have to wait for these components before we can proceed with our test. To be
able detect that Camel's startup has finished, we need to use the CamelExtension.

Get the CamelExtension for this Akka system
Get the activation future
wait for Camel to finish starting up

This Extension contains the activationFutureFor method, which returns a
Future. The Future triggers when the Camel route is done starting up. So after that,
we can proceed with our test.

Listing 13.1 Test the Order Consumer

Create the XML content
Write the file in the message directory
Expect the Order message to be sent by the Consumer

As you can see, we receive an Order message when a file containing XML is
placed in the messages directory. Note, we are not required to provide any code

val camelUri = "file:messages"
val consumer = system.actorOf(
 Props(new OrderConsumerXml(camelUri, probe.ref)))

val camelExtention = CamelExtension(system)

val activated = camelExtention.activationFutureFor(
 consumer)(timeout = 10 seconds, executor = system.dispatcher)

Await.result(activated, 5 seconds)

val msg = new Order("me", "Akka in Action", 10)
val xml = <order>
 <customerId>{ msg.customerId }</customerId>
 <productId>{ msg.productId }</productId>
 <number>{ msg.number }</number>

 </order>
val msgFile = new File(dir, "msg1.xml")

FileUtils.write(msgFile, xml.toString())

probe.expectMsg(msg)
system.stop(consumer)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

323

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

dealing with checking for files and reading them in; all this functionality is
provided by Camel Consumer.

This is nice, but it's just the starting point of Camel's real benefit. Let's say that we
also get these XML messages though a TCP connection. How should we
implement this? Actually, we already have. To support the TCP connection, all we
have to do is to change the used URI and add some libraries to the runtime.

Listing 13.2 TCP test using Order Consumer

Use another Uri
Due to the textline option newlines indicate end of message, so we need to remove
them
Send XML message using TCP

In this Example we use the Mina component to deal with the TCP connection.
The second part of the URI looks completely different, but is needed to configure
the connection. We start with the protocol we need (TCP) and then we indicate on
which interface and port we want to listen. After this we include two options (as
parameters).

CHANGING THE TRANSPORT LAYER OF OUR CONSUMER

val probe = TestProbe()
val camelUri =

 "mina:tcp://localhost:8888?textline=true&sync=false"
val consumer = system.actorOf(
 Props(new OrderConsumerXml(camelUri, probe.ref)))
val activated = CamelExtension(system).activationFutureFor(
 consumer)(timeout = 10 seconds, executor = system.dispatcher)
Await.result(activated, 5 seconds)
val msg = new Order("me", "Akka in Action", 10)
val xml = <order>
 <customerId>{ msg.customerId }</customerId>
 <productId>{ msg.productId }</productId>
 <number>{ msg.number }</number>
 </order>

val xmlStr = xml.toString().replace("n", "")
val sock = new Socket("localhost", 8888)
val ouputWriter = new PrintWriter(sock.getOutputStream, true)

ouputWriter.println(xmlStr)
ouputWriter.flush()
probe.expectMsg(msg)
ouputWriter.close()
system.stop(consumer)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

324

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://localhost:8888?textline=true&sync=false
http://www.manning-sandbox.com/forum.jspa?forumID=835

textline=true
This indicates that we are expecting plain text over this connection and that each message
is ended with a newline
sync=false
This indicates that we don't create a response

As you can see, without any code changes to the consumer, we can change the
transport protocol. Can we change to any protocol without changes? The answer is
no, some protocols do require code changes. For example, what about a protocol
that needs a confirmation? Let's see how we can do that. Let's assume that our TCP
connection needs an XML response. To be able to do this, we need to change our
consumer. But it's not that hard. We just send the response to the sender and the
Camel Consumer will take care of the rest.

Listing 13.3 Confirm Order Consumer

Send the reply to the sender

That is all and when we change the Uri we can test our new consumer. But
before we do that we see that we also have to catch a possible exception and didn't

class OrderConfirmConsumerXml(uri: String, next: ActorRef)
 extends Consumer {

 def endpointUri = uri

 def receive = {
 case msg: CamelMessage => {
 try {
 val content = msg.bodyAs[String]
 val xml = XML.loadString(content)
 val order = xml \ "order"
 val customer = (order \ "customerId").text
 val productId = (order \ "productId").text
 val number = (order \ "number").text.toInt
 next ! new Order(customer, productId, number)

 sender ! "<confirm>OK</confirm>"
 } catch {
 case ex: Exception =>
 sender ! "<confirm>%s</confirm>".format(ex.getMessage)
 }
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

325

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

we say in chapter 3 that we let our actors crash when there are any problems? And
that the supervisor should correct these problems? We are now implementing an
endpoint which is the separation between a synchronous interface and a messages
passing system, which is an asynchronous interface. On these boundaries between
the synchronous and asynchronous interfaces, the rules are a little different because
the synchronous interface always expects a result, even when it fails. When we try
to use supervision, we are missing the sender details to correctly service the
request. And we can't use the restart hook either, because the supervisor can decide
to resume after an exception, which doesn't result in calling the restart hooks.
Therefore, we are catching the exception and are able to return the expected
response. Having said this, let's test our Consumer.

Listing 13.4 TCP test using Order Confirm Consumer

Remove the sync parameter, default is true
Receive the confirmation message
And the Order is still received

val probe = TestProbe()
val camelUri =

 "mina:tcp://localhost:8888?textline=true"
val consumer = system.actorOf(
 Props(new OrderConfirmConsumerXml(camelUri, probe.ref)))
val activated = CamelExtension(system).activationFutureFor(
 consumer)(timeout = 10 seconds, executor = system.dispatcher)
Await.result(activated, 5 seconds)
val msg = new Order("me", "Akka in Action", 10)
val xml = <order>
 <customerId>{ msg.customerId }</customerId>
 <productId>{ msg.productId }</productId>
 <number>{ msg.number }</number>
 </order>
val xmlStr = xml.toString().replace("n", "")
val sock = new Socket("localhost", 8888)
val ouputWriter = new PrintWriter(sock.getOutputStream, true)
ouputWriter.println(xmlStr)
ouputWriter.flush()
val responseReader = new BufferedReader(
 new InputStreamReader(sock.getInputStream))

var response = responseReader.readLine()
response must be("<confirm>OK</confirm>")

probe.expectMsg(msg)
responseReader.close()
ouputWriter.close()
system.stop(consumer)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

326

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://localhost:8888?textline=true
http://www.manning-sandbox.com/forum.jspa?forumID=835

We hardly changed the consumer and were able to generate responses over
TCP. Most of the functionality is done by the Camel module (which uses the camel
components).

There is one other example we want to show. Sometimes a Camel component
needs more configuration than only a URI.

For example when we want to use the ActiveMQ component. To be able to use
this we need to add the component to the Camel context and define the MQ broker.
This requires the camel context.

Listing 13.5 Add broker configuration to CamelContext

Component name should be used in the Uri

First we get the CamelExtension for the used system and then we add the
ActiveMQ component to the CamelContext. In this case we create a broker that
listens on port 8899 (and don't use persistence queues).

Now we can do the test. For this example, we use the first Consumer without a
response.

USING THE CAMEL CONTEXT

val camelContext = CamelExtension(system).context

camelContext.addComponent("activemq",
 ActiveMQComponent.activeMQComponent(
 "vm:(broker:(tcp://localhost:8899)?persistent=false)"))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

327

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://localhost:8899)?
http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 13.6 Test when using ActiveMQ

The ActiveMQ URI starting with the same as the component name when adding
the ActiveMQ component.

The test isn't any different from the other consumer test, other than how the
message is delivered.

Because a broker is started, we also need to stop them when we are ready. This
can be done using the BrokerRegistry of ActiveMQ

Using the BrokerRegistry, we can close all the brokers. Note getBrokers returns
a java.util.Map. We are using the collection.JavaConversions to convert this map
into a Scala Map.

As you can see, it is very simple to implement a Camel Consumer. And because
Camel has a lot of components, this gives us the ability to support many transport
protocols without any effort.

val camelUri = "activemq:queue:xmlTest"
val consumer = system.actorOf(
 Props(new OrderConsumerXml(camelUri, probe.ref)))
val activated = CamelExtension(system).activationFutureFor(
 consumer)(timeout = 10 seconds, executor = system.dispatcher)
Await.result(activated, 5 seconds)
val msg = new Order("me", "Akka in Action", 10)
val xml = <order>
 <customerId>{ msg.customerId }</customerId>
 <productId>{ msg.productId }</productId>
 <number>{ msg.number }</number>
 </order>
sendMQMessage(xml.toString())
probe.expectMsg(msg)
system.stop(consumer)

val brokers = BrokerRegistry.getInstance().getBrokers
brokers.foreach { case (name, broker) => broker.stop() }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

328

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

In the previous section, we created an endpoint that receives messages. In this
section, we are going to implement the functionality to send messages using
Camel. To show the producer functionality, we move to the other side of our
example: wßith the consumer we were working on a endpoint at the Order System,
but for these examples we are going to implement an endpoint in the Bookshop
application, see Figure 13.10.

Figure 13.10 Producer endpoint sending messages

To implement a producer, the Camel module has another trait we will extend,
named Producer. The producer is also an Actor, but the receive method is already
implemented. The simplest implementation is just to extend the Producer trait and
set the Uri, as shown in Figure 13.11.

Figure 13.11 Implementation of a simple Producer endpoint

This Producer sends all received messages to the Camel component defined by

13.2.2 Implement a producer endpoint sending messages to an
external System

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

329

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

the Uri. So when we create an XML string and send it to the Producer, it can be
sent using a TCP connection. In this example we use our consumer from the
previous section to receive the message. And because we now have two Camel
actors, we can't start the test until both Actors are ready. To wait for both we use
the Future.sequence method. This uses a list of Futures we want to wait for (and
need), and an implicit ExecutionContext.

Listing 13.7 Test simple producer

Create the simple producer
Create a Future to wait for both actors to finish starting up.

So every message will be sent to the defined URI. But most of the time you
need to translate the message to another format. In our shop system, we use the
Order object when sending messages between the system actors. To solve this we
can override the transformOutgoingMessage. This method is called before sending
the message. Here we can do the translation of our message to the expected XML

implicit val ExecutionContext = system.dispatcher
val probe = TestProbe()
val camelUri =
 "mina:tcp://localhost:8888?textline=true&sync=false"
val consumer = system.actorOf(
 Props(new OrderConsumerXml(camelUri, probe.ref)))
val producer = system.actorOf(

 Props(new SimpleProducer(camelUri)))
val activatedCons = CamelExtension(system).activationFutureFor(
 consumer)(timeout = 10 seconds, executor = system.dispatcher)
val activatedProd = CamelExtension(system).activationFutureFor(
 producer)(timeout = 10 seconds, executor = system.dispatcher)

val camel = Future.sequence(List(activatedCons, activatedProd))
Await.result(camel, 5 seconds)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

330

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://localhost:8888?textline=true&sync=false
http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 13.8 Translate message in Producer

indicate that we don't expect a response
Implementing the transformOutgoingMessage
create message ended with a newline

In the transformOutgoingMessage we create an XML string and, just as in the
consumer test, we need a message on a single line ended with a new line. Because
our Consumer does not send a response, we need to signal the underlying
framework that it doesn't need to wait for one. Otherwise, it will be consuming
resources for no reason. And it is possible that we could consume all the threads,
which will stop your system. So it is important to override the oneway attribute
when there are no responses.

Now we are able to send an Order object to the Producer endpoint and the
producer translates this into an XML. But what happens when we do have
responses? For example when we use the OrderConfirmConsumerXML. Figure
13.12 shows the default behavior of a producer that sends the received
CamelMessage, which contains the XML response to the original sender.

class OrderProducerXml(uri: String) extends Producer {
 def endpointUri = uri

 override def oneway: Boolean = true

 override protected def transformOutgoingMessage(message: Any): Any =
 {
 message match {
 case msg: Order => {
 val xml = <order>
 <customerId>{ msg.customerId }</customerId>
 <productId>{ msg.productId }</productId>
 <number>{ msg.number }</number>
 </order>

 xml.toString().replace("n", "")
 }
 case other => message
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

331

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 13.12 Using responses with the Camel Producer

But just as we need to translate our message when sending it, we need also a
translation of the response. We don't want to expose the CamelMessage to the rest
of our system. To support this we can use the transformResponse method. This
method is used to convert the received message into a system-supported message,
and the producer will send this response.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

332

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 13.9 Translate responses and message in Producer

Transform the CamelMessage into a String containing the result.

The transformResponse is called when a response is received, before it is sent
to the sender of the initial request. In this example, we parse the received XML and
select the value of the confirm tag. Let's see how this works in a test.

class OrderConfirmProducerXml(uri: String) extends Producer {
 def endpointUri = uri
 override def oneway: Boolean = false

 override def transformOutgoingMessage(message: Any): Any = {
 message match {
 case msg: Order => {
 val xml = <order>
 <customerId>{ msg.customerId }</customerId>
 <productId>{ msg.productId }</productId>
 <number>{ msg.number }</number>
 </order>
 xml.toString().replace("n", "") + "n"
 }
 case other => message
 }
 }

 override def transformResponse(message: Any): Any = {
 message match {
 case msg: CamelMessage => {
 try {
 val content = msg.bodyAs[String]
 val xml = XML.loadString(content)
 (xml \ "confirm").text
 } catch {
 case ex: Exception =>
 "TransformException: %s".format(ex.getMessage)
 }
 }
 case other => message
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

333

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 13.10 Test the Producer with responses

Message is received by Consumer
Confirmation is received by our test class

This is nice, but I don't want to send the confirmation to the original sender of
the request, but to another actor. Is this possible? Yes, there is a method called
routeResponse. This method is responsible for sending the received response to the
original sender. This can be overridden and here you can implement the
functionality to send the message to another actor. But be careful when you are
also using the transformResponse method: you have to call it in this overridden
method because the default implementation is calling the transformResponse
before sending the response message to the original sender.

As you can see, creating producers is as easy as creating consumers. Camel
provides a lot of functionality when creating an endpoint, and support for a lot of
transport protocols. This is the greatest benefit of using the Camel module for
Akka: to get support for a lot of protocols without additional effort.

In the next section, we are going to look at two examples of consumer
endpoints that contain the actual connection to the Order system for creating a
response.

implicit val ExecutionContext = system.dispatcher
val probe = TestProbe()
val camelUri =
 "mina:tcp://localhost:8889?textline=true"
val consumer = system.actorOf(
 Props(new OrderConfirmConsumerXml(camelUri, probe.ref)))
val camelProducerUri = "mina:tcp://localhost:8889?textline=true"
val producer = system.actorOf(
 Props(new OrderConfirmProducerXml(camelProducerUri)))
val activatedCons = CamelExtension(system).activationFutureFor(
 consumer)(timeout = 10 seconds, executor = system.dispatcher)
val activatedProd = CamelExtension(system).activationFutureFor(
 producer)(timeout = 10 seconds, executor = system.dispatcher)
val camel = Future.sequence(List(activatedCons, activatedProd))
Await.result(camel, 5 seconds)
val msg = new Order("me", "Akka in Action", 10)
producer ! msg

probe.expectMsg(msg)

expectMsg("OK")
system.stop(producer)
system.stop(consumer)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

334

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://localhost:8889?textline=true
tcp://localhost:8889?textline=true
http://www.manning-sandbox.com/forum.jspa?forumID=835

In the previous sections we have seen how Camel can help us to implement
endpoints. But because in the course of implementing a real system, all kinds of
little problems arise; Camel isn't the only framework that can help us. Actually
Akka is designed in such way that it can be integrated with any framework. So you
will be able to use your preferred framework or the one you know best. Next, we
are going to show an example of how to use Akka in a different environment:
using a REST interface. REST is a standard protocol to expose intuitive interfaces
to systems. We are still creating an endpoint for our system. In section 4.3.2 we
have already implemented a REST interface using play-mini. This framework is
based on the play framework, targeting services that don't have a UI. As we
already mentioned, we are going to show two other possible implementations. The
first is using Camel, which will be a minimal implementation of a REST interface,
but when you need more functionality and are designing a REST interface with a
lot of messages, Camel may be a little too minimalist. In these cases, Spray can
help. Spray is an open-source toolkit for REST/HTTP and low-level network IO on
top of Scala and Akka. The examples we show will be simple, but it addresses the
issues of general integration techniques. We start with the example description and
then we show you the two implementations. Starting with Camel and then Spray

We are going to implement our Order System example again. But this time we are
also implementing a Mockup of our processing Order system. So we can see how
the endpoint forwards the request to the system and waits for the response before
returning its response. We are going to do this by implementing one endpoint
which uses the REST transport protocol. The overview of this example is shown in
Figure 13.13.

13.3 Example of implementing a REST interface

13.3.1 The REST example

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

335

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 13.13 REST Example overview

The example has two interfaces: one between the Web shop and the endpoint
and one between the endpoint and the order processor. We start by defining the
messages for both interfaces. The Order system will support two functions. The
first function is to add a new order and the second function is to get the status of an
order. The REST interface we are going to implement supports a POST and a GET.
With the POST, we add a new order to our system and with the GET we retrieve
the status of that order. Lets start with adding an order. Figure 13.14 shows the
messages and the flow.

Figure 13.14 Message flow when adding an order

The Web shop sends a POST request to the endpoint containing the XML
already used in the Camel examples in section 13.2.1. And the endpoint translates
it to the Order message and sends it to the rest of the system (Process Orders).
When done, the response is a TrackingOrder object, which contains the order, a
unique id, and the current status. The Endpoint translates this to a confirm XML
containing the Id and status and sends it back to the Web shop. In this example, the
new order got the id 1 and the status 'received.'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

336

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The next Figure 13.15 shows the messages when getting the status of an order
already in the order system.

Figure 13.15 Message flow when getting the status of an order

To get the status, the Web shop will send a GET request with a parameter id,
which contains the requested order id, in this case 1. This is translated to an
OrderId. The response of the system is again a TrackingOrder Message when the
order is found. The endpoint translates this response into a statusResponse XML.
When the Order isn't found, the system will respond with a NoSuchOrder object,
shown in Figure 13.16.

Figure 13.16 Message flow when trying to get the status of an unknown order

When the endpoint receives the NoSuchOrder message, the status of the XML
response will be "id is unknown" and the id is filled with the unknown OrderId.
Now that we have defined the messages sent through the system, we are ready to
implement the Process Orders component. Figure 13.17 shows the implementation
of the interface we just defined.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

337

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 13.17 Implementation of the process orders

This is a simple representation of a complete system that implements two
possible requests. We added also a reset function which can be used while testing
the complete system.

Now we are ready to implement the REST endpoint. As we mentioned earlier
we show two examples of how to do that using different frameworks. We start by
using the Camel framework.

We have implemented a REST interface with Camel in the previous section.
Another framework which is often used in combination with Akka is the Spray
toolkit. This is also a lightweight and modular toolkit. So just as is the case with
Akka, you only have to include the parts of Spray you actually use. Spray also has
it own test kit and is able to test your code without building a complete application.
When you need REST/HTTP support, Spray is a great way to connect your Akka
applications to other Systems.

To give you a feeling of how Spray can help you in implementing a REST
interface, we are going to implement the same example REST endpoint using it.
But keep in mind, this is only a small part of Spray, there is much more.

As we mentioned earlier, the Spray toolkit uses Actors to implement its
functionality. Therefore we start by creating an Actor which extends the spray
HttpService. A good practice is to separate the route definitions and the actual
actor, because this enables you to test the routes without starting the actor. For this,

13.3.2 Implementing a Rest endpoint with Spray

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

338

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Spray has its own test kit which enables you to test only the route. But in our
example we want to use the complete actor environment. Figure 13.18 shows both
the Actor and the trait containing the route.

Figure 13.18 Endpoint implementation using Spray

The trait OrderService contains the route, which defines the REST interface,
The OrderServiceActor is the placeholder and parent Actor of the processing of the
Spray components. To make it work we need to set the actorRefFactory of the
HttpService. This is the actor context, which is used when creating the necessary
spray components. And we need to implement the receive method. Here we define
which route we are going to use. This is all we need to do in the ServiceActor. Our
OrderService extends the HttpService and contains all the functionality of our
REST implementation.

In the trait we define a route. This is the REST interface and defines which
messages we accept. Defining the route is done by using Directives. You can see
our Directive: as a rule the received messages should match. A directive has one or
more of the following functions

Transform the request
Filter the request
Complete the request

Directives are small building blocks out of which you can construct arbitrarily
complex route and handling structures. The generic form is:

name(arguments) { extractions => ... // inner route }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

339

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Spray has a lot of predefined Directives and of course, you can create custom
directives. We are using some of the most basic and common directives in this
example. We start with the path directive. This defines the Path of the request we
are going to implement.

Just as in the Camel example, we are going to implement the request path
/orderTest. And we are going to support the POST and the GET requests. This is
done by the next two directives the get and post directive. These directives are
placed in the inner route of the path.

The get and post take no arguments so the braces can be left out. And because
we append two directives we need to add the ~. When we forget this ~ the
compiler will not complain, but every Directive after this position will not be
included in the route and therefore, when sending a POST request, it will not be
processed as intended; every request that doesn't conform to this definition will get
the "File not found" response. When a request with another path like "order" or
method DELETE the framework will respond with the "file not found" error.

At this point we can implement our request. We start with the implementation
of the get method. This request needs the parameter id. This can also be retrieved
by using a directive.

path("orderTest") {
 ...
}

path("orderTest") {
 get {
 ...
 } ~
 post {
 ...
 }
}

The ~ appends
multiple directives

path("orderTest") {
 get {
 parameter('id.as[Long]) { id =>
 val orderId = new OrderId(id)
 ...
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

340

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The parameter directive retrieves the parameter id from the request and
converts it to a long. When the GET request doesn't contain the id parameter, the
selection fails and therefore the "file not found" error is sent back. When we have
the id, we can create our business Object OrderId, which we will proceed to send
on to our system. But before we describe this next step, we are going to show an
even easier way to create our OrderId. When using a case class as business object,
Spray is able to create the OrderId for us. The parameters must have the same
name as the arguments of our case class. When we do this, we can create our
business object using the following

This code is doing the same as the previous example. Now that we have our
OrderId we can send the message to our system and create the response when the
reply is received. This is done by using the complete directive.

path("orderTest") {
 get {
 parameters('id.as[Long]).as(OrderId) { orderId =>
 ...
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

341

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 13.11 Implementation GET status request

Send OrderId to process orders System
Translate TrackingOrder response to XML
Translate NoSuchOrder response to XML

The complete directive returns the response from the request. In the simplest
implementation, the result is returned directly. But in our case, we need to wait for
the reply from our system before we can create the response. Therefore, we return
a Future which will contain the response of the request. We send the OrderId to our
order system and use the map method on the received Future to create the
response. Remember, the code block of the map method is executed when the
Future finishes, which isn't in the current thread, so be careful what references you
use. By returning XML, Spray sets the content type of the response automatically
to text/xml. This is all there is to implementing the GET method.

Next, we start to implement the POST request. This is almost the same as the
GET implementation. The only difference is that we don't need a parameter of the
query, but need the body of the post. To do this, we use the entity directive

path("orderTest") {
 get {
 parameters('id.as[Long]).as(OrderId) { orderId =>
 complete {

 val askFuture = orderSystem ? orderId
 askFuture.map {

 case result:TrackingOrder => {
 <statusResponse>
 <id>{result.id}</id>
 <status>{result.status}</status>
 </statusResponse>
 }

 case result:NoSuchOrder => {
 <statusResponse>
 <id>{result.id}</id>
 <status>ID is unknown</status>
 </statusResponse>
 }
 }
 }
 }
 }
}

post {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

342

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Now that we have our order object we can implement the response of the POST
request. When we finish our created trait we get the following

 entity(as[String]) { body =>
 val order = XMLConverter.createOrder(body.toString)
 ...
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

343

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 13.12 Implementation OrderService

trait OrderService extends HttpService {
 val orderSystem: ActorRef

 implicit val timeout: Timeout = 1 second

 val myRoute = path("orderTest") {

 get {

 parameters('id.as[Long]).as(OrderId) { orderId =>
 //get status

 complete {
 val askFuture = orderSystem ? orderId

 askFuture.map {
 case result: TrackingOrder => {
 <statusResponse>
 <id>{ result.id }</id>
 <status>{ result.status }</status>
 </statusResponse>
 }
 case result: NoSuchOrder => {
 <statusResponse>
 <id>{ result.id }</id>
 <status>ID is unknown</status>
 </statusResponse>
 }
 }
 }
 }

 } ~

 post {
 //add order

 entity(as[String]) { body =>
 val order = XMLConverter.createOrder(body.toString)

 complete {
 val askFuture = orderSystem ? order

 askFuture.map {
 case result: TrackingOrder => {
 <confirm>
 <id>{ result.id }</id>
 <status>{ result.status }</status>
 </confirm>.toString()
 }
 case result: Any => {
 <confirm>
 <status>
 Response is unknown{ result.toString() }
 </status>
 </confirm>.toString()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

344

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Define request path
Define the GET method
Define and get the id parameter
Define the response
Create the actual response
Define the POST method
Get the request body
Define the response
Create the actual response
Don't forget to append the two directives

We have now implemented the complete route. How do we proceed further? To
create a real server we need to bind our actor to the HTTP server. How to do that
depends on how you choose to run the application: as a stand-alone application or
in a Web server. When creating a stand-alone application, we can create a spray
server by extending the SprayCanHttpServerApp. This trait has a method to create
an HttpService, which needs our OrderServiceActor. After we create the server, we
need to tell it where to connect to.

Listing 13.13 Boot class

Extends from SprayCanHttpServerApp
Start our service
Create Http server

 }
 }
 }
 }
 }
 }
}

object BootOrderServer extends App with SprayCanHttpServerApp {

 //create and start our service actor
 val service = system.actorOf(Props(

 new OrderServiceActor(orderSystem)), "my-service")

 //create a new HttpServer using our handler tell it where to bind to

 val httpServer = newHttpServer(service)

 httpServer ! Bind(interface = "0.0.0.0", port = 8080)

}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

345

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Bind our service with the Http server

When we want to run it in a web server, we have to extend a similar class
WebBoot, which will be created by the spray.servlet.Initializer. This and the
servlet spray.servlet.Servlet30ConnectorServlet have to be added to the web.xml
file. But for more details, look at the Spray web site.

But for our test we are using the SprayCanHttpServerApp trait.

Listing 13.14 Implementation of test boot class

Start our service
Create Http server
Bind our service to the Http server
Add Stop method to be able to stop the server while testing

In this class we added a stop method to be able to gracefully shutdown.
Now we have our REST implementation and can start a server, we are able to

do our tests. To build up our test environment we have to do the following

And at this point we can do the same tests as we did with the Camel
implementation.

class OrderHttpServer(host: String, portNr: Int, orderSystem: ActorRef)
 extends SprayCanHttpServerApp {

 //create and start our service actor

 val service = system.actorOf(Props(
 new OrderServiceActor(orderSystem)), "my-service")

 //create a new HttpServer using our handler tell it where to bind to

 val httpServer = newHttpServer(service)

 httpServer ! Bind(interface = host, port = portNr)

 def stop() {
 system.stop(httpServer)
 system.shutdown()
 }

}

val orderSystem = system.actorOf(Props[OrderSystem])
val orderHttp = new OrderHttpServer("localhost", 8181, orderSystem)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

346

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 13.15 Test post and get request

orderSystem ! "reset"
val url = "http://localhost:8181/orderTest"
val msg = new Order("me", "Akka in Action", 10)
val xml = <order>
 <customerId>{ msg.customerId }</customerId>
 <productId>{ msg.productId }</productId>
 <number>{ msg.number }</number>
 </order>
val urlConnection = new URL(url)
val conn = urlConnection.openConnection()
conn.setDoOutput(true)
conn.setRequestProperty("Content-type",
 "text/xml; charset=UTF-8")

val writer = new OutputStreamWriter(conn.getOutputStream)
writer.write(xml.toString())
writer.flush()
//check result
val reader = new BufferedReader(
 new InputStreamReader((conn.getInputStream)))
val response = new StringBuffer()
var line = reader.readLine()
while (line != null) {
 response.append(line)
 line = reader.readLine()
}
writer.close()
reader.close()

conn.getHeaderField(null) must be("HTTP/1.1 200 OK")

val responseXml = XML.loadString(response.toString)
val confirm = responseXml \ "confirm"
(confirm \ "id").text must be("1")
(confirm \ "status").text must be("received")
val url2 = "http://localhost:8181/orderTest?id=1"

val urlConnection2 = new URL(url2)
val conn2 = urlConnection2.openConnection()
//Get response
val reader2 = new BufferedReader(
 new InputStreamReader((conn2.getInputStream)))
val response2 = new StringBuffer()
line = reader2.readLine()
while (line != null) {
 response2.append(line)
 line = reader2.readLine()
}
reader2.close()
//check response

conn2.getHeaderField(null) must be("HTTP/1.1 200 OK")
val responseXml2 = XML.loadString(response2.toString)

val status = responseXml2 \ "statusResponse"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

347

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://localhost:8181/orderTest
http://localhost:8181/orderTest?id=1
http://www.manning-sandbox.com/forum.jspa?forumID=835

Send a post Request
Check the status code of the response
Check the content of the response
Send a get status Request
Check the status code of the response
Check the content of the response

And our Spray implementation is working just like our Camel implementation.
As we mentioned before this is only a small part of the capabilities of Spray. When
you need to create a REST/HTTP interface, you have to take a look at Spray.

System Integrations tend to require many of the things that Akka offers out of the
box:

Asynchronous, message-based tasks

Easy ability to provide data conversion

Service production/consumption

We pulled in Spray and Camel to make the REST easy, which allowed us to focus
on implementing many of the typical integration patterns using just Akka and not
writing a lot of code that was tied to the chosen transports or component layers.

Akka brings a lot to the party on the System Integration front. In addition to the
topics covered here: the blocking and tackling of consuming services, getting data,
converting it, and the providing it to other consumers, the core aspects of the Actor
Model, concurrency and fault tolerance, represent critical contributors to making
the integrated system reliable and scalable. It's easy to imagine expanding any of
our pattern examples here to include some of the replaceability we saw in the fault
tolerance chapter, and the scaling abilities from chapter 6. Quite often, this is the
most onerous aspect of Integration: dealing with the pressure of real flows going in
and out, against performance constraints and reliability requirements.

(status \ "id").text must be("1")
(status \ "status").text must be("processing")

13.4 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

348

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

14
In this chapter

Cluster Membership
Cluster Aware Routers
Cluster Patterns

In chapter 6 you learned how to build your first distributed application with a
fixed number of nodes. The approach we took, using static membership, is simple
but provides no out-of-the-box support for load balancing or fail over. A cluster
makes it possible to dynamically grow and shrink the number of nodes used by a
distributed application, and removes the fear of a single point of failure.

Many distributed applications run in environments that are not completely
under your control, like cloud computing platforms or data centers located across
the world. The larger the cluster, the greater the chance of failure. Of course,
despite this, there are complete means of monitoring and controlling the lifecycle
of the cluster. In the first section of this chapter, we'll look at how a node becomes
a member of the cluster, how you can listen to membership events, and how you
can detect that nodes have crashed in the cluster.

First we're going to build a clustered actor system to make a word count table
from a piece of text. Within the context of this example, you will learn how routers
can be used to communicate with actors in the cluster, how you can build a
resilient coordinated process consisting of many actors in the cluster, as well as
how to test a clustered actor system.

Clustering

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

349

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

A Cluster is a dynamic group of nodes. On each node is an actor system that listens
on the network (like we saw in chapter 6). Cluster builds on top of the akka-remote
module. Clustering takes location transparency to the next level. The actor might
exist locally or remotely and could reside anywhere in the cluster, your code does
not have to concern itself with this. Figure 1.1 shows a cluster of 4 nodes:

Figure 14.1 A 4 node clustered actor system

The ultimate goal for the Cluster module is to provide fully automated features
for actor distribution, load balancing and fail over. Right now the cluster module
supports the following features:

Cluster membership - Fault tolerant membership for systems.Actor
Load balancing - routing messages to actors in the cluster based on a routing algorithm.
Node partitioning - A node can be given a specific in the cluster. Routers can beRole
configured to only send messages to nodes with a specific role.
Partition points - An actor system can be partitioned in actor sub-trees that are located on
different nodes. Right now only top level are supported. This means thatpartition points
you can only access top level actors on nodes in the cluster using Routers.

We will dive into the details of these features in this chapter.
Although these features do not provide everything we need for a fully location

transparent cluster (like failover, re-balancing, re-partitioning and replication of
state) they do provide the means to scale applications dynamically.

14.1 Why use Clustering?

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

350

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

A single purpose data processing application is the best candidate for using
cluster right now, for instance data processing tasks like image recognition or
real-time analysis of social media. Nodes can be added or removed when more or
less processing power is required. Processing Jobs are supervised: if an actor fails,
the job is restarted and retried on the cluster until it succeeds. We will look at a
simple example of this type of application in this chapter. Figure 1.2 shows an
overview for this type of application, don't worry about the details here, because
we will introduce the terms you may not be familiar with later in this chapter:

Let's get on to writing the code to compile our clustered word count application.
In the next section, we'll dig into the details of cluster membership so that the Job
Masters and Workers can find each other to work together.

We will start with the creation of the cluster. The processing cluster will consist of
job master and worker nodes. Figure 1.3 shows the cluster that we are going to
build:

14.2 Cluster Membership

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

351

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 14.2 Words counting Cluster

The job master nodes control and supervise the completion of word counting
jobs. The job workers request work from a job master and process parts of the text
and return the partial results to the master. The job master reports the result once
all word counting has been done. A job is repeated if any master or worker node
fails during the process.

Figure 1.3 also shows another type of node that will be required in the cluster,
namely . The seed nodes are essential for starting the cluster. In the nextseed nodes
section we will look at how nodes become seed nodes and how they can join and
leave the cluster. We will look at the details of how a cluster is formed and
experiment with joining and leaving a very simple cluster using the REPL console.
You will learn about the different states that a member node can go through and
how you can subscribe to notifications of these state changes.

Like with any kind of group you need a couple of 'founders' to start off the process.
Akka provides a feature for this purpose. Seed nodes are both theseed node
starting point for the cluster and they serve as the first point of contact for other
nodes. Nodes join the cluster by sending a message which contains the uniqueJoin
address of the node that joins. The Cluster module takes care of sending this
message to one of the registered seed nodes. It is not required for a node to contain
any actors so it is possible to use pure seed nodes. Figure 1.4 shows how a first
seed node initializes a cluster and how other nodes join the cluster:

14.2.1 Joining the cluster

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

352

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 14.3 Initializing a cluster with seed nodes

Cluster does not (yet) support a zero-config discovery protocol like
TCP-Multicast or DNS service discovery. You have to specify a list of seed nodes.
The first seed node in the list has a special role in initially forming the cluster.
Subsequent seed nodes are dependent on the first seed node in the list. The first
node in the seed list starts up and automatically joins itself and forms the cluster.
The first seed node needs to be up before next seed nodes can join the cluster. This
constraint has been put in place to prevent separate clusters from forming while
seed nodes are starting up.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

353

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

NOTE Manually joining cluster nodes
The seed nodes feature is not required: you can create a cluster
manually by starting a node that joins itself. Subsequent nodes will
then have to join that node to join the cluster.

Which means that they will have to know the address of the first
node so it makes more sense to use the seed functionality. There
are cases where you cannot know IP addresses or DNS names of
servers in a network beforehand. In that case, there are two
choices that seem plausible:

Use a list of known pure seed nodes with well known IP
addresses or DNS names, outside of the network where host
name addresses cannot be predetermined. These seed
nodes do not run any application specific code and purely
function as a first point of contact for the rest of the cluster.

Get your hands dirty building your own cluster discovery
protocol that fits your network environment. This is a
non-trivial task.

The seed nodes can all boot independently as long as the first seed node in the
list is started at some point. The subsequent seed nodes will wait for the first node
to come up. Once this first node is started other nodes join the cluster. The first
seed node can safely leave the cluster once the cluster has two or more members.
Figure 1.5 shows an overview of how we're going to build a cluster of masters and
workers after at least the first seed node has started:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

354

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 14.4 A job processing cluster

Let's start by creating the seed nodes using the REPL console. You can find the
project for this example on the github repository under the chapter-cluster
directory.

A node first needs to be configured to use the cluster module. The akka-cluster
dependency needs to be added to the build file as shown below:

The build file defines a val for the version of Akka

 "com.typesafe.akka" %% "akka-cluster" % akkaVersion

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

355

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The needs to be configured in much theakka.cluster.ClusterActorRefProvider
same way the remote module needed a . Theakka.remote.RemoteActorRefProvider
Cluster API is provided as an Akka Extension. The ClusterActorRefProvider
initializes the Cluster extension when the actor system is created.

Listing 1.2 shows a minimal configuration for the seed nodes.

Listing 14.1 Configuring the seed nodes

Initializes the cluster module.
Remote configuration for this seed node.
The seed nodes of the cluster.
The seed node is given a seed role to differentiate from workers and masters.

We'll start all the nodes locally throughout these examples. If you want to test
this on a network, just replace the -DHOST and -DPORT with the appropriate
hostname and port respectively. Start sbt in three terminals using different ports.
The first seed node in the list is started as shown below:

akka {
 loglevel = INFO
 stdout-loglevel = INFO
 event-handlers = ["akka.event.Logging$DefaultLogger"]

 actor {

 provider = "akka.cluster.ClusterActorRefProvider"
 }

 remote {
 enabled-transports = ["akka.remote.netty.tcp"]
 log-remote-lifecycle-events = off
 netty.tcp {
 hostname = ""
 host = ${HOST}
 port = ${PORT}
 }
 }

 cluster {
 seed-nodes = ["akka.tcp://words@127.0.0.1:2551",
 "akka.tcp://words@127.0.0.1:2552",

 "akka.tcp://words@127.0.0.1:2553"]

 roles = ["seed"]
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

356

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://words@127.0.0.1:2551
tcp://words@127.0.0.1:2552
tcp://words@127.0.0.1:2553"]
http://www.manning-sandbox.com/forum.jspa?forumID=835

Do the same for the other two terminals, replacing the -DPORT to 2552 and
2553. Every node in the same cluster needs to have the same actor system name
("words" in the above example). Switch to the first terminal in which we'll start the
first seed node.

The first node in the seed nodes must automatically start and form the cluster.
Let's verify that in a REPL session, start the console in sbt in the first terminal
started with port 2551 and follow along with listing 1.4. Figure 1.6 shows the
result.

Figure 14.5 Startup the first seed node

 sbt -DPORT=2551 -DHOST=127.0.0.1

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

357

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.2 Starting up a seed node

Load the configuration for the seed node. It contains the config shown in Listing
1.2. This config file is located in src/main/resources/seed.conf
Start the "words" actor system as seed node.
Remote and cluster modules are automatically started. The console output is
simplified to show the most relevant messages.
The cluster name is the same as the name of the actor system.
The "words" cluster seed node is started.
The "words" cluster seed node has automatically joined the cluster.

Start the console on the other two terminals and paste in the same code as in
Listing 1.4 to start seed node 2 and 3. The seeds will listen on the port that we
provided as -DPORT when we started sbt. Figure 1.7 shows the result of the REPL
commands for seed node 2 and 3.

...
scala> :paste
// Entering paste mode (ctrl-D to finish)

import akka.actor._

import akka.cluster._

import com.typesafe.config._

val seedConfig = ConfigFactory.load("seed")

val seedSystem = ActorSystem("words", seedConfig)

// Exiting paste mode, now interpreting.

[Remoting] Starting remoting
[Remoting] listening on addresses :
[akka.tcp://words@127.0.0.1:2551]
...

[Cluster(akka://words)]
Cluster Node [akka.tcp://words@127.0.0.1:2551]

- Started up successfully
Node [akka.tcp://words@127.0.0.1:2551] is JOINING, roles [seed]
[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2551]

- Leader is moving node [akka.tcp://words@127.0.0.1:2551] to [Up]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

358

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://words@127.0.0.1:2551]
akka://words)]
tcp://words@127.0.0.1:2551]
tcp://words@127.0.0.1:2551]
akka://words)]
tcp://words@127.0.0.1:2551]
tcp://words@127.0.0.1:2551]
http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 14.6 Startup the second seed node

You should see something similar to Listing 1.5 in the other two terminals,
confirming that the nodes joined the cluster.

Listing 14.3 Seed node 3 confirming joining the cluster

Output formatted for readability, will show as one line in the terminal

Listing 1.6 shows the output of the first seed node. The output shows that the
first seed node has determined that the two other nodes want to join.

Listing 14.4 Terminal output of seed node 1

[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2553]

- Welcome from [akka.tcp://words@127.0.0.1:2551]

[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2551]

- Node [akka.tcp://words@127.0.0.1:2551] is JOINING, roles [seed]
- Leader is moving node [akka.tcp://words@127.0.0.1:2551] to [Up]

- Node [akka.tcp://words@127.0.0.1:2552] is JOINING, roles [seed]
- Leader is moving node [akka.tcp://words@127.0.0.1:2552] to [Up]

- Node [akka.tcp://words@127.0.0.1:2553] is JOINING, roles [seed]
- Leader is moving node [akka.tcp://words@127.0.0.1:2553] to [Up]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

359

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

akka://words)]
tcp://words@127.0.0.1:2553]
tcp://words@127.0.0.1:2551]
akka://words)]
tcp://words@127.0.0.1:2551]
tcp://words@127.0.0.1:2551]
tcp://words@127.0.0.1:2551]
tcp://words@127.0.0.1:2552]
tcp://words@127.0.0.1:2552]
tcp://words@127.0.0.1:2553]
tcp://words@127.0.0.1:2553]
http://www.manning-sandbox.com/forum.jspa?forumID=835

Output abbreviated and formatted for readability.
The first seed node joins itself and becomes the leader.
Seed node 2 is joining.
Seed node 3 is joining.

One of the nodes in the cluster takes on special responsibilities; to be the
 of the cluster. The leader decides if a member node is up or down. In thisLeader

case the first seed node is the leader.
Only one node can be leader at any point in time. Any node of the cluster can

become the leader. Seed node 2 and 3 both request to join the cluster, which puts
them in the state. The leader moves the nodes to the state, making themJoining Up
part of the cluster. All three seed nodes have now successfully joined the cluster.

Let's see what happens if we let the first seed node leave the cluster. Listing 1.7
shows seed node 1 leaving the cluster:

Listing 14.5 Seed 1 leaving the cluster

Get the address for this node.
let seed node 1 leave the cluster
Marked as Leaving
Marked as Exiting

Listing 1.7 shows that seed node 1 marks itself as Leaving, then as Exiting
while it is still the leader. These state changes are communicated to all nodes in the
cluster. After that the cluster node is shutdown. The actor system itself (the
seedSystem) is not shut down automatically on the node. What happens with the

14.2.2 Leaving the cluster

scala> val address = Cluster(seedSystem).selfAddress
address: akka.actor.Address = akka.tcp://words@127.0.0.1:2551

scala> Cluster(seedSystem).leave(address)

[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2551]

- Marked address [akka.tcp://words@127.0.0.1:2551] as [Leaving]
[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2551]

- Leader is moving node [akka.tcp://words@127.0.0.1:2551] to [Exiting]
[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2551]
- Shutting down...
[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2551]
- Successfully shut down

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

360

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://words@127.0.0.1:2551scala
tcp://words@127.0.0.1:2551scala
akka://words)]
tcp://words@127.0.0.1:2551]
tcp://words@127.0.0.1:2551]
akka://words)]
tcp://words@127.0.0.1:2551]
tcp://words@127.0.0.1:2551]
akka://words)]
tcp://words@127.0.0.1:2551]
akka://words)]
tcp://words@127.0.0.1:2551]
http://www.manning-sandbox.com/forum.jspa?forumID=835

cluster? The leader node just shut down. Figure 1.8 shows how the first seed node
leaves the cluster and how leadership is transferred.

Figure 14.7 First seed node leaves the cluster

Let's look at the other terminals. One of the two remaining terminals should
show output similar to Listing 1.8.

Listing 14.6 Seed 2 becomes leader and removes seed 1 from the cluster

The exiting seed node has the Exiting state.
The leader removes the exiting node.

Both remaining seed nodes detect that the first seed node has been flagged as
. Both seed nodes are also aware that the first seed node has requestedUnreachable

to leave the cluster. The second seed node automatically becomes the leader when
the first seed node is in an Exiting state. The leaving node is moved from an

 state to a state. The cluster now consists of 2 seed nodes.Exiting Removed

[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2552]
- Marking exiting node(s) as UNREACHABLE
[Member(address = akka.tcp://words@127.0.0.1:2551, status = Exiting)].

This is expected and they will be removed.

[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2552]
- Leader is removing exiting node [akka.tcp://words@127.0.0.1:2551]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

361

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

akka://words)]
tcp://words@127.0.0.1:2552]
tcp://words@127.0.0.1:2551
akka://words)]
tcp://words@127.0.0.1:2552]
tcp://words@127.0.0.1:2551]
http://www.manning-sandbox.com/forum.jspa?forumID=835

NOTE Gossip Protocol
You might have wondered how the seed nodes in the example
knew about the fact that the first seed node was leaving, then
exiting and was finally removed. Akka uses a protocol toGossip
communicate the state of the cluster to all member nodes of the
cluster.

Every node gossips about it's own state and the states that it
has seen to other nodes (the gossip). The protocol makes it
possible for all nodes in the cluster to eventually agree about the
state of every node. This agreement is called whichConvergence
occurs over time while the nodes are gossiping to each other.

A leader for the cluster can be determined after convergence.
The first node, in sort order, that is Up or Leaving automatically
becomes the leader.

The actor system on the first seed node cannot join the cluster again by simply
using . The actor system isCluster(seedSystem).join(selfAddress)

removed and can only join the cluster again if it is restarted. Listing 1.9 shows how
the first seed node can 're-join':

Listing 14.7 Seed 2 becomes leader and removes seed 1 from the cluster

Shutdown the actor system.
Start a new actor system with the same configuration. The actor system
automatically joins the cluster.

An actor system can only ever join a cluster once. A new actor system can be
started with the same configuration, using the same host and port which is what is
done in Listing 1.9.

So far we've looked at gracefully joining and leaving the cluster. Figure 1.9
shows a state diagram of the member states that we have seen so far. The leader
performs a leader action at specific member states, moving a member from Joining
to Up and from Exiting to Removed.

 scala> seedSystem.shutdown

 scala> val seedSystem = ActorSystem("words", seedConfig)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

362

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 14.8 Graceful state transitions of a node joining and leaving the cluster

This is not the complete picture yet, Let's look at what happens if one of the
seed nodes crashes. We can simply kill the terminal that runs seed node 1 and look
at the output of the other terminals. Listing 1.10 shows the output of the terminal
running seed node 2 when seed node 1 has been killed abruptly:

Listing 14.8 Seed 1 crashes

Seed node 1 becomes unreachable.

Seed node 1 has been flagged as unreachable. The Cluster uses a failure
detector to detect unreachable nodes. The seed node was in an Up state when it
crashed. A node can crash in any of the states we've seen before. The leader can't
execute any leader actions as long as any of the nodes are unreachable, which
means that no node can leave or join. The unreachable node will first have to be
taken down. You can take a node down from any node in the cluster using the

 method. Listing 1.11 shows how the first seed node is downed from thedown

REPL:

Cluster Node [akka.tcp://words@127.0.0.1:2552]
- Marking node(s) as UNREACHABLE

 [Member(address = akka.tcp://words@127.0.0.1:2551, status = Up)]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

363

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

tcp://words@127.0.0.1:2552]
tcp://words@127.0.0.1:2551
http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.9 Taking down Seed 1 manually

Seed node 1 is down.
Seed node 1 is quarantined and removed.

The output also shows that if the seed node 1 actor system would want to
re-join it will have to restart. An unreachable node can also be taken down
automatically. This is configured with the

 setting. The leaderakka.cluster.auto-down-unreachable-after

will automatically take unreachable nodes down after the set duration in this
setting. Figure 1.10 shows all possible state transitions for a node in the cluster:

Figure 14.9 All States and transitions of a node

scala> val address = Address("akka.tcp", "words", "127.0.0.1",2551)

scala> Cluster(seedSystem).down(address)

[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2552]
- Marking unreachable node [akka.tcp://words@127.0.0.1:2551] as [Down]
- Leader is removing unreachable node [akka.tcp://words@127.0.0.1:2551]

[Remoting] Association to [akka.tcp://words@127.0.0.1:2551]
having UID [1735879100]
is irrecoverably failed. UID is now quarantined and
all messages to this UID
will be delivered to dead letters.
Remote actorsystem must be restarted to recover from this situation.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

364

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

akka://words)]
tcp://words@127.0.0.1:2552]
tcp://words@127.0.0.1:2551]
tcp://words@127.0.0.1:2551]
tcp://words@127.0.0.1:2551]
http://www.manning-sandbox.com/forum.jspa?forumID=835

NOTE Failure Detector
The cluster module uses an implementation of a Accrual Phi Failure

 to detect unreachable nodes. Detecting failures is aDetector
fundamental issue for fault-tolerance in distributed systems.

The Accrual Phi Failure Detector calculates a phi value on a
continuous scale instead of determining a boolean value indicating
failure (if the node is reachable or not). This phi value is used as an
indicator for suspecting that something is wrong (a suspicion level)
instead of determining a hard and fast yes or no result.

The suspicion level concept makes the failure detector tunable
and allows for a decoupling between application requirements and
monitoring of the environment. The cluster module provides
settings for the failure detector which you can tune for your specific
network environment in the section,akka.cluster.failure-detector
amongst which a threshold for the phi value at which a node is
deemed to be unreachable.

Another reason that occurs often is when a node is unreachable
for a longer period of time because it is in a state, whichGC-Pause
means that it is taking far too long to finish garbage collection and
cannot do anything else until GC has completed.

We would definitely want to be notified if any of the nodes in the cluster fails.
You can subscribe an actor to cluster events using the method on thesubscribe

Cluster extension. Listing 1.12 shows an actor that subscribes to cluster domain
events:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

365

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.10 Subscribe to Cluster Domain Events

Subscribes to the cluster domain events on actor creation
Listen for cluster domain events
Unsubscribe after the actor is stopped

The example ClusterDomainEventListener simply logs what has happened in
the cluster.

The Cluster domain events tell you something about the cluster members but in
many cases it suffices to know if an actor in the cluster is still there. We can simply
use DeathWatch using the method to watch actors in the cluster as you'llwatch

see in the next section.

...
import akka.cluster.{MemberStatus, Cluster}
import akka.cluster.ClusterEvent._

class ClusterDomainEventListener extends Actor with ActorLogging {

 Cluster(context.system).subscribe(self, classOf[ClusterDomainEvent])

 def receive ={
 case MemberUp(member) => log.info(s"$member UP.")
 case MemberExited(member)=> log.info(s"$member EXITED.")
 case MemberRemoved(m, previousState) =>
 if(previousState == MemberStatus.Exiting) {
 log.info(s"Member $m gracefully exited, REMOVED.")
 } else {
 log.info(s"$m downed after unreachable, REMOVED.")
 }
 case UnreachableMember(m) => log.info(s"$m UNREACHABLE")
 case ReachableMember(m) => log.info(s"$m REACHABLE")
 case s: CurrentClusterState => log.info(s"cluster state: $s")
 }

 override def postStop(): Unit = {

 Cluster(context.system).unsubscribe(self)
 super.postStop()
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

366

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

It's time to process some jobs with a cluster. We're going to focus first on how the
actors in the cluster communicate with each other to complete a task. The cluster
receives a text whose words we wish to count. The text is divided into pieces and
delivered to several worker nodes. Every worker node processes its part by
counting the occurrences of every word in the text. The worker nodes process the
text in parallel, which should result in faster processing. Eventually the result of
the counting is sent back to the user of the cluster. The fact that we're going to
count the occurences of words is of course not the focus; you can process many
jobs in the way that is shown in this section.

The example can be found in the same chapter-cluster directory as used before
for the examples on joining and leaving the cluster. Figure 1.11 shows the structure
of the application:

Figure 14.10 Words cluster actors

The JobReceptionist and JobMaster actors will run on a Master Role Node. The
JobWorkers will run on a Worker Role node. Both JobMasters and JobWorker
actors are created dynamically, on demand. Whenever a JobReceptionist receives a
JobRequest it spawns a JobMaster for the Job and tells it to start work on the job.

14.3 Clustered Job Processing

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

367

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The JobMaster creates JobWorkers remotely on the Worker Role nodes. Figure
1.12 shows an overview of the process. We will address each step in detail in the
rest of this chapter.

Figure 14.11 Job processing

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

368

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Every JobWorker receives a Task message which contains a portion of the text.
The JobWorker splits the text in words and counts the occurrence of every word,
returning a TaskResult which contains a Map of word counts. The JobMaster
receives the TaskResults and merges all the maps, adding up the counts for every
word, which is basically the reduce step. The WordCount result is eventually sent
back to the Job Receptionist.

In the next sections, we will address all the steps in the overview. First we will
start the cluster, then we will distribute the work that has to be done between
master and workers. After that we're going to look at how we can make the job
processing resilient including restarting the job when a node crashes. Finally we'll
address how to test the cluster.

NOTE Some caveats for the example
This example is kept simple on purpose. The JobMaster keeps
intermediate results in memory and all the data that is processed is
sent between the actors.

If you have to deal with batch processing of extremely large
amounts of data you need to put effort into getting the data close to
the process before processing it, stored on the same server that the
process is running on, and you can't simply collect data in memory.
In, for instance Hadoop based systems, this means pushing all the
data onto HDFS (Hadoop Distributed File System) before
processing it and writing all the results back to HDFS as well. In our
example, we will simply send the workload around in the cluster.
The reduce step that adds up the results of all the workers is done
by the master to simplify things a bit instead of having parallel
reducers that start as soon as the first task has been completed.

It is possible to achieve all of this, but it's more than we can
cover here in this chapter. Our example will show how to do
resilient job processing and can be a starting point for more realistic
cases.

You can build the example in the chapter-cluster directory using sbt assembly

. This creates a file in the target directory. The jar file containswords-node.jar
three different configuration files, one for the master, one for the worker and one
for the seed. Listing 1.13 shows how to run 1 seed node, one master and 2 workers
locally on different ports:

14.3.1 Starting the Cluster

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

369

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.11 Run nodes

The master.conf and worker.conf file define a list of local seed nodes running
on 127.0.0.1 and ports 2551, 2552 and 2553. The seed node list can also be
configured using a system property.

NOTE Overriding the seed node list from the command line
You can override the seed nodes with

 where [n]-Dakka.cluster.seed-nodes.[n]=[seednode]

needs to be replaced with the position in the seed list starting with 0
and [seednode] with the seed node value.

The master can't do anything without the workers so it would make sense to
have the JobRecipient on the master start up only when the cluster has some
minimum number of worker nodes running. You can specify the minimum number
of members with a certain role in the cluster configuration. Listing 1.14 shows part
of the master.conf file for this purpose:

Listing 14.12 Configure minimum number of worker nodes for MemberUp event.

The configuration of the master specifies that there should be at least 2 worker
nodes in the cluster. The cluster module provides a registerOnMemberUp

java -DPORT=2551 \
 -Dconfig.resource=/seed.conf \
 -jar target/words-node.jar
java -DPORT=2554 \
 -Dconfig.resource=/master.conf \
 -jar target/words-node.jar
java -DPORT=2555 \
 -Dconfig.resource=/worker.conf \
 -jar target/words-node.jar
java -DPORT=2556 \
 -Dconfig.resource=/worker.conf \
 -jar target/words-node.jar

 role {
 worker.min-nr-of-members = 2
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

370

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

method to register a function that is executed when the member node is up, in this
case the master node, which takes the minimum number of worker nodes into
account. The function is called when the master node has successfully joined the
cluster and when there are 2 or more worker nodes running in the cluster. Listing
1.15 shows the Main class that is used to start all types of nodes in the words
cluster:

Listing 14.13 Configure minimum number of worker nodes for MemberUp event.

Only if this node has a master role.
Register a code block to be executed when the member is up
The JobReceptionist is only created when the cluster is up with at least 2 worker
role nodes present.

The worker node does not need to start any actors, the JobWorkers are going to
be started on demand as you will see in the next section. We will use a Router to
deploy and communicate with the JobWorkers.

object Main extends App {
 val config = ConfigFactory.load()
 val system = ActorSystem("words", config)

 println(s"Starting node with roles: ${Cluster(system).selfRoles}")

 val roles = system.settings
 .config
 .getStringList("akka.cluster.roles")

 if(roles.contains("master")) {

 Cluster(system).registerOnMemberUp {
 val receptionist = system.actorOf(Props[JobReceptionist],

 "receptionist")
 println("Master node is ready.")
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

371

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

The JobMaster needs to first create the JobWorkers and then broadcast the Work
message to them. Using routers in the cluster is exactly the same as using routers
locally. We just need to change how we create the routers. We'll use a Router with
a BroadcastPool RouterConfig to communicate with the JobWorkers. A Pool is a
RouterConfig that creates Actors where a Group is a RouterConfig that is used to
route to already existing Actors as explained in the Routing chapter. In this case we
want to dynamically create the JobWorkers and kill them after the job is done so a
Pool is the best option. The JobMaster Actor uses a separate trait to create the
Router. The separate trait will come in handy during testing as you will see later.
The trait is shown in Listing 1.15, which creates the worker router:

Listing 14.14 Create a Clustered BroadcastPool Router

Needs to mixin with an actor.
The ClusterRouterPool takes a Pool.
Total maximum number of workers in the cluster.
Max number of workers per node.
Do not create local routees. We only want Workers on the other nodes.
Nodes with this role will be routed to!.
Create JobWorkers with standard Props.

14.3.2 Work Distribution using Routers

trait CreateWorkerRouter { this: Actor =>
 def createWorkerRouter: ActorRef = {
 context.actorOf(

 ClusterRouterPool(BroadcastPool(10),
 ClusterRouterPoolSettings(

 totalInstances = 1000,

 maxInstancesPerNode = 20,

 allowLocalRoutees = false,

 useRole = None
)

).props(Props[JobWorker]),
 name = "worker-router")
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

372

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

NOTE Router configuration
In this case the JobMaster is created dynamically for every Job so it
needs to create a new router every time, which is why it is done in
code. It is also possible to configure router deployment using the
configuration as described in the Router chapter. You can specify a
cluster section in the deployment configuration to enable the router
for clustering and set the ClusterRouter Pool or Group settings, like

 and .use-role allow-local-routees

The trait only does one thing, create the router to theCreateWorkerRouter

workers. Creating the clustered router is very similar to creating a normal router.
All you need to do is pass in a which can use any of theClusterRouterPool

existing Pools, like BroadcastPool, RoundRobinPool and ConsistentHashingPool
and the like. The controls how instances ofClusterRouterPoolSettings

the JobWorkers are created. JobWorkers will be added to joining worker nodes as
long as the has not been reached yet. In the abovetotalInstances

configuration 50 nodes could join the cluster before the router stops deploying new
JobWorkers. The JobMaster creates the router when it is created as shown in
Listing 1.16 and uses it to send out messages to the workers, also shown in Figure
1.13:

Figure 14.12 Deploy JobWorkers and broadcast Work messages

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

373

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.15 The JobMaster uses the router to broadcast Work messages to
JobWorkers

Mix in the CreateWorkerRouter trait.
Create the router.
Schedule a message to the router.

The code snippet in Listing 1.14 also shows something else. The JobMaster
actor is a state machine and uses to go from one state to the next. It startsbecome

in the idle state until the Job Receptionist sends it a message. Once theStartJob

JobMaster receives this message it splits up the text in parts of 10 lines and
schedules the messages without delay to the workers. It then transitions toWork

the state to start handling responses from the workers. The Work messageworking
is scheduled in case other Worker nodes join the cluster after the Job has been
started. State machines make a distributed coordinated task more comprehensible.
In fact, both the JobMaster and JobWorker actors are state machines.

There is also a ClusterRouterGroup which has a ClusterRouterGroupSettings
similar to how the ClusterRouterPool is setup. The actors that are routed to need to
be running before a Group Router can send messages to them. The words cluster
can have many master role nodes. Every master role starts up with a
JobReceptionist actor. In the case that you would want to send messages to every
JobReceptionist you could use a ClusterRouterGroup, for instance sending a

class JobMaster extends Actor
 with ActorLogging

 with CreateWorkerRouter {
 // inside the body of the JobMaster actor..

 val router = createWorkerRouter

 def receive = idle

 def idle: Receive = {
 case StartJob(jobName, text) =>
 textParts = text.grouped(10).toVector
 val cancel = system.scheduler.schedule(0 millis,
 1000 millis,

 router,
 Work(jobName, self))
 become(working(jobName, sender, cancel))
 }
 // more code

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

374

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

message to the JobReceptionists to cancel all currently running jobs in the cluster.
Listing 1.17 shows how you can create a Router which looks up Job Receptionists
on master role nodes in the cluster:

Listing 14.16 Send messages to all JobReceptionists in the cluster

The ClusterRouterGroup.
The number of instances is overridden by the cluster group settings.
The path for looking up the (top level) receptionist actor.
Route to master nodes only.

So far we've looked at how the JobMaster distributes the Work message to the
JobWorkers. In the next section we'll look at how the JobWorkers request more
work from the JobMaster until the work is done and how the cluster recovers from
failure during job processing.

The JobWorker receives the message and sends a message back to theWork

JobMaster that it wants to enlist itself for work. It also immediately sends the
 message to ask for the first task to process. The figure shows the flowNextTask

of messages. Listing 1.18 shows how the JobWorker transitions from the idle state
to the enlisted state:

val receptionistRouter = context.actorOf(

 ClusterRouterGroup(

 BroadcastGroup(Nil),
 ClusterRouterGroupSettings(
 totalInstances = 100,

 routeesPaths = List("/user/receptionist"),
 allowLocalRoutees = true,

 useRole = Some("master")
)
).props(),
 name = "receptionist-router")

14.3.3 Resilient Jobs

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

375

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 14.13 JobWorker Enlists itself and requests NextTask

The JobWorker indicates to the JobMaster that it wants to take part in the job
by sending an Enlist message. The Enlist message contains the JobWorker's
ActorRef so that the JobMaster can use it later. The JobMaster watches all the
JobWorkers that enlist, in case one or more of them crashes and stops all the
JobWorkers once the job is finished.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

376

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.17 JobWorker transitions from idle to enlisted state.

Start as idle.
receives the Work message.
Becomes enlisted.
Send Enlist message to master.
Send NextTask to master.

The JobWorker switches to the enlisted state and expects to receive a Task
message from the Master to process. The JobWorker watches the JobMaster and
sets a ReceiveTimeout. If the JobWorker receives no messages within the
ReceiveTimeout it will ask the JobMaster again for a NextTask as shown in the
enlisted Receive function. The JobWorker stops itself if the JobMaster dies. As
you can see there is nothing special about the watch and Terminated messages,
DeathWatch works just like in non-clustered actor systems. The JobMaster is in the
working state in the mean time, shown in listing 1.19:

def receive = idle

def idle: Receive = {

 case Work(jobName, master) =>

 become(enlisted(jobName, master))

 log.info(s"Enlisted, will start working for job '${jobName}'.")

 master ! Enlist(self)

 master ! NextTask

 watch(master)
 setReceiveTimeout(30 seconds)

 def enlisted(jobName:String, master:ActorRef): Receive = {
 case ReceiveTimeout =>
 master ! NextTask
 case Terminated(master) =>
 setReceiveTimeout(Duration.Undefined)
 log.error(s"Master terminated for ${jobName}, stopping self.")
 stop(self)
 ...
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

377

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Figure 14.14 JobMaster sends Tasks to JobWorkers and watches them

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

378

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.18 JobMaster enlists worker and sends Tasks to JobWorkers.

Use a StoppingStrategy
Watches the worker that enlisted and keeps track of the workers in a list
receives the NextTask request from the worker and sends back a Task message.
JobMaster stops if no workers have enlisted within a ReceiveTimeout.
JobMaster stops if any of the JobWorkers fail.

The Listing shows that the JobMaster registers and watches the workers that
want to take part in the work. The JobMaster sends back a WorkLoadDepleted

to the JobWorker if there is no more work to be done.
The JobMaster also uses a ReceiveTimeout (which is set when the Job is

started) just in case no JobWorkers ever report to enlist. The JobMaster stops itself

// inside the JobMaster..

import SupervisorStrategy._

override def supervisorStrategy: SupervisorStrategy = stoppingStrategy

def working(jobName:String,
 receptionist:ActorRef,
 cancellable:Cancellable): Receive = {

 case Enlist(worker) =>
 watch(worker)
 workers = workers + worker

 case NextTask =>
 if(textParts.isEmpty) {
 sender ! WorkLoadDepleted
 } else {
 sender ! Task(textParts.head, self)
 workGiven = workGiven + 1
 textParts = textParts.tail
 }

 case ReceiveTimeout =>
 if(workers.isEmpty) {
 log.info(s"No workers responded in time. Cancelling $jobName.")
 stop(self)
 } else setReceiveTimeout(Duration.Undefined)

 case Terminated(worker) =>
 log.info(s"Worker $worker got terminated. Cancelling $jobName.")
 stop(self)

//more code to follow..

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

379

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

if the ReceiveTimeout occurs. It also stops itself if any JobWorker is stopped. The
JobMaster is the supervisor of all the JobWorkers it deployed (the router
automatically escalates problems). Using a StoppingStrategy makes sure that a
failing JobWorker is automatically stopped which triggers the Terminated message
that the JobMaster is watching out for.

The JobWorker receives Tasks, processes the Task, sends back a TaskResult
and asks for the NextTask. Listing 1.21 shows the enlisted state of the JobWorker:

Figure 14.15 JobWorker processes Tasks and sends back TaskResult.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

380

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.19 JobWorker processes Tasks and sends back TaskResult.

Process the task
Send the result to the JobMaster
Ask for the next task
Switch off ReceiveTimeout and retire, the job is done.
The retired state.

There are some benefits to requesting the work from the JobWorker as is done
in this example. The main one is that the workload is automatically balanced
between the JobWorkers because the JobWorkers request the work. A JobWorker
that has more resources available to do the work simply requests tasks more often
than a JobWorker which is under higher load. (This is how thread pools work.) If
the JobMaster were instead forced to send tasks to all JobWorkers in round-robin
fashion, it would be possible that one or more of the JobWorkers is overloaded
while others sit idle.

def enlisted(jobName:String, master:ActorRef): Receive = {
 case ReceiveTimeout =>
 master ! NextTask

 case Task(textPart, master) =>

 val countMap = processTask(textPart)
 processed = processed + 1

 master ! TaskResult(countMap)

 master ! NextTask

 case WorkLoadDepleted =>
 log.info(s"Work load ${jobName} is depleted, retiring...")

 setReceiveTimeout(Duration.Undefined)
 become(retired(jobName))

 case Terminated(master) =>
 setReceiveTimeout(Duration.Undefined)
 log.error(s"Master terminated for ${jobName}, stopping self.")
 stop(self)
 }

 def retired(jobName: String): Receive = {
 case Terminated(master) =>
 log.error(s"Master terminated for ${jobName}, stopping self.")
 stop(self)
 case _ => log.error("I'm retired.")
 } // definition of processTask follows in the code...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

381

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

NOTE AdaptiveLoadBalancingPool and
AdaptiveLoadBalancingRouter
There is an alternative to requesting work from the worker nodes.
There is an AdaptiveLoadBalancingPool and
AdaptiveLoadBalancingGroup router that uses the Cluster Metrics
to decide which node is best suited to receive messages. The
Metrics can be configured to use or .JMX Hyperic Sigar

The JobMaster receives TaskResult messages in the working state and merges
the results when there is a task result for every task that was sent out. Listing 1.22
shows how the JobMaster transitions to the finishing state when all work is done to
merge the intermediate results, sending back the WordCount.

Figure 14.16 JobWorker processes Tasks and sends back TaskResult.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

382

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.20 JobMaster stores and merges intermediate results, completes the
Job.

Store the intermediate results coming from the JobWorkers
Remember the scheduled task that sends out Work messages? it's now time to
cancel it.
Transition to finishing state
Send a MergeResults to self so that the results are merged in the finishing state.
Receiving the MergeResults message the JobMaster sent to itself
Merging all results.
Kill all the workers, the job is done.
Send the final result to the JobReceptionist.

The JobReceptionist finally receives the WordCount and kills the JobMaster,
which completes the process. The JobWorker crashes when it encounters a text

def working(jobName:String,
 receptionist:ActorRef,
 cancellable:Cancellable): Receive = {

 ...

 case TaskResult(countMap) =>

 intermediateResult = intermediateResult :+ countMap
 workReceived = workReceived + 1

 if(textParts.isEmpty && workGiven == workReceived) {

 cancellable.cancel()

 become(finishing(jobName, receptionist, workers))
 setReceiveTimeout(Duration.Undefined)

 self ! MergeResults
 }
}
...
def finishing(jobName: String,
 receptionist: ActorRef,
 workers: Set[ActorRef]): Receive = {

 case MergeResults =>

 val mergedMap = merge()

 workers.foreach(stop(_))

 receptionist ! WordCount(jobName, mergedMap)

 case Terminated(worker) =>
 log.info(s"Job $jobName is finishing, stopping.")
}
...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

383

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

with the word FAIL in it to simulate failures by throwing an Exception. The
JobReceptionist watches the JobMasters it creates. It also uses a StoppingStrategy
in case the JobMaster crashes. Let's look at the Supervision hierarchy for this actor
system and how Death Watch is used to detect failure in Figure 1.18:

Figure 14.17 Supervision Hierarchy for the words actor system.

Of course we use ReceiveTimeout to detect that the actors are not receiving
messages in time so that we can take action. The JobReceptionist keeps track of the
jobs it has sent out. When it receives a Terminated message, it checks if the job has
been completed. If not, it sends itself the original JobRequest which results in the
process starting over again. The JobReceptionist simulates the resolution of the
failure simulated with the "FAIL" text by removing the "FAIL" text from the job
after a number of retries, as shown in listing 1.23:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

384

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.21 JobReceptionist retries JobRequest on JobMaster failure.

Send the JobRequest without the simulated failure.
Send the JobRequest again.

We're going to use this simulation of failures in the next section where we're
going to test the words cluster.

You can use the sbt-multi-jvm plugin and the multi-node-testkit module just like
with the Remote module. It's also still convenient to test the actors locally, which is
easily done if we isolate the creation of actors and routers into traits. Listing 1.22
shows how test versions of the Receptionist and the JobMaster are created for the
test. Traits are used to override the creation of the worker routers and job masters.

case Terminated(jobMaster) =>

 jobs.find(_.jobMaster == jobMaster).foreach { failedJob =>
 log.error(s"$jobMaster terminated before finishing job.")

 val name = failedJob.name
 log.error(s"Job ${name} failed.")
 val nrOfRetries = retries.getOrElse(name, 0)

 if(maxRetries > nrOfRetries) {
 if(nrOfRetries == maxRetries -1) {
 // Simulating that the Job worker
 // will work just before max retries

 val text = failedJob.text.filterNot(_.contains("FAIL"))

 self.tell(JobRequest(name, text), failedJob.respondTo)
 } else self.tell(JobRequest(name, failedJob.text),

 failedJob.respondTo)

 updateRetries
 }
 }
}

14.3.4 Testing the Cluster

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

385

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.22 JobReceptionist retries JobRequest on JobMaster failure.

This trait requires that the 'mixee' define a context, which is the JobMaster class in
our case.
Create a non-clustered router.
Create a test version of the JobMaster, overriding how the router is created.
Create a test version of the JobReceptionist, overriding how the JobMaster is
created.
Create a test version of the JobMaster.

The local test is shown in Listing 1.23. As you can see the test is business as
usual, JobRequests are sent to the JobReceptionist. The Response is verified using
expectMsg (the ImplicitSender automatically makes the testActor the sender of all
messages, as described in the TDD chapter.)

trait CreateLocalWorkerRouter extends CreateWorkerRouter {

 def context: ActorContext

 override def createWorkerRouter: ActorRef = {
 context.actorOf(BroadcastPool(5).props(Props[JobWorker]),

 "worker-router")
 }
}

class TestJobMaster extends JobMaster

 with CreateLocalWorkerRouter

class TestReceptionist extends JobReceptionist
 with CreateMaster {
 override def createMaster(name: String): ActorRef = {

 context.actorOf(Props[TestJobMaster], name)
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

386

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.23 Local Words Spec.

Create the test version of the Job Receptionist.
The failure is simulated by a job worker throwing an exception on finding the word
FAIL in the text.

The multi-node test does not modify the creation of the Actors and the Router.
To test the cluster we first have to create a MultiNodeConfig, which is shown in
Listing 1.24.

class LocalWordsSpec extends TestKit(ActorSystem("test"))
 with WordSpec
 with MustMatchers
 with StopSystemAfterAll
 with ImplicitSender {

 val receptionist = system.actorOf(Props[TestReceptionist],
 JobReceptionist.name)
 val words = List("this is a test ",
 "this is a test",
 "this is",
 "this")

 "The words system" must {
 "count the occurrence of words in a text" in {
 receptionist ! JobRequest("test2", words)
 expectMsg(JobSuccess("test2", Map("this" -> 4,
 "is" -> 3,
 "a" -> 2,
 "test" -> 2)))
 expectNoMsg
 }
 ...
 "continue to process a job with intermittent failures" in {

 val wordsWithFail = List("this", "is", "a", "test", "FAIL!")
 receptionist ! JobRequest("test4", wordsWithFail)
 expectMsg(JobSuccess("test4", Map("this" -> 1,
 "is" -> 1,
 "a" -> 1,
 "test" -> 1)))
 expectNoMsg
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

387

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.24 The MultiNode configuration, defines roles

Define the roles in the test.
Provide a test configuration. The ClusterActorRefProvider makes sure cluster is
initialized. You can add more common configuration here for all nodes in the test.

The MultiNodeConfig is used in the MultiNodeSpec as you might recall from
chapter 6. The WordsClusterSpecConfig is used in the WordsClusterSpec, which is
shown in Listing 1.25.

import akka.remote.testkit.MultiNodeConfig
import com.typesafe.config.ConfigFactory

object WordsClusterSpecConfig extends MultiNodeConfig {

 val seed = role("seed")
 val master = role("master")
 val worker1 = role("worker-1")
 val worker2 = role("worker-2")

 commonConfig(ConfigFactory.parseString("""
 akka.actor.provider="akka.cluster.ClusterActorRefProvider"
 """))
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

388

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Listing 14.25 Words Cluster Spec

class WordsClusterSpecMultiJvmNode1 extends WordsClusterSpec
class WordsClusterSpecMultiJvmNode2 extends WordsClusterSpec
class WordsClusterSpecMultiJvmNode3 extends WordsClusterSpec
class WordsClusterSpecMultiJvmNode4 extends WordsClusterSpec

class WordsClusterSpec extends MultiNodeSpec(WordsClusterSpecConfig)
with STMultiNodeSpec with ImplicitSender {

 import WordsClusterSpecConfig._

 def initialParticipants = roles.size

 val seedAddress = node(seed).address
 val masterAddress = node(master).address
 val worker1Address = node(worker1).address
 val worker2Address = node(worker2).address

 muteDeadLetters(classOf[Any])(system)
 "A Words cluster" must {

 "form the cluster" in within(10 seconds) {

 Cluster(system).subscribe(testActor, classOf[MemberUp])
 expectMsgClass(classOf[CurrentClusterState])

 Cluster(system).join(seedAddress)

 receiveN(4).map { case MemberUp(m) => m.address }.toSet must be(

 Set(seedAddress, masterAddress, worker1Address, worker2Address))

 Cluster(system).unsubscribe(testActor)

 enterBarrier("cluster-up")
 }

 "execute a words job" in within(10 seconds) {

 runOn(master) {
 val receptionist = system.actorOf(Props[JobReceptionist],
 "receptionist")
 val text = List("some", "some very long text", "some long text")
 receptionist ! JobRequest("job-1", text)
 expectMsg(JobSuccess("job-1", Map("some" -> 3,
 "very" -> 1,
 "long" -> 2,
 "text" -> 2)))
 }
 enterBarrier("job-done")
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

389

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

One for every node in the test
Get the address for every node
Subscribe the testActor so it is possible to expect the cluster member events
Join the seed node. The config is not using a seed list so we manually start the seed
role node.
Verify that all nodes have joined
run a job on the master and verify the results. The other nodes only call
enterBarrier.

The actual test is almost exactly the same as the local version as you can see.
The clustered one only makes sure that the cluster is up before the test is run on the
master. The test that recovers from failure is not shown here but is exactly the
same as the test in Listing 1.25 with a "FAIL" text added to the text to trigger the
failure, just like in the local version.

NOTE Cluster Client
The test sends the JobRequest from the master node. You might
wonder how you can talk to a cluster from the outside, for instance
in this case how you can send a JobRequest to one of the nodes in
the cluster from outside the cluster.

The akka-contrib module contains a couple of cluster patterns,
one of them is the . A ClusterClient is an Actor whichClusterClient
is initialized with a list of initial contacts (for instance the seed
nodes) that forwards messages to actors in the cluster using

 Actors on every node. We will use theClusterRecipient
ClusterClient in the next chapter on Actor Persistence, as well as
some of the other patterns in akka-contrib.

That concludes how actors can be tested in a cluster. We've just shown a few
test cases here; in real life you would obviously test far more scenarios. Testing
locally has the benefit of simply testing the logic of how the actors communicate,
where the multi-node-testkit can help you find issues in cluster startup or other
cluster specific issues. We're hoping to have demonstrated that testing a clustered
actor system is not very different from testing local actors and does not necessarily
have to be hard. multi-node tests are great for high level integration tests where
you can verify sequentially how the cluster initializes or what happens if a node
crashes.

 ...
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

390

Licensed to Konstantinos Pouliasis <konstantinos.pouliasis@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=835

Dynamically growing and shrinking a simple application ended up being rather
simple with the cluster extension. Joining and leaving the cluster was easily done
and we could once again just test the functionality in a REPL console, a tool which
allows you to experiment and verify how things work. If you have followed along
with the REPL sessions it should have been immediately apparent how solid this
extension is; crashes in the cluster are properly detected and death watch works
just as you would expect.

Clustering has been a notoriously painful chasm to cross, usually requiring a lot
of admin and programming changes. In this chapter we saw that Akka makes it
much easier, and doesn't require rewriting code. In the process, we also learned:

how easy it is to form a cluster
the node lifecycle state machine
how to put it all together into a working app
how to test the cluster logic

Of course the example was not about counting words, but about Akka's generic
way of processing jobs in parallel in a cluster. We made use of clustered routers
and some simple messages for actors to work together and deal with failure.

Finally we were able to test everything, another big advantage you quickly get
used to when using Akka. Being able to unit test a cluster is quite a unique feature
and makes it possible to find problems in your application before you get to large
scale production deployment. The words cluster actors used some temporary state
about the job, spread amongst the various actors. We could reproduce the input
from the JobRequest that was stored at the JobReceptionist when a failure occurred
in the masters or the workers. One situation this solution cannot recover from is
when the JobReceptionist crashes, because the JobRequest data will be lost,
making it impossible to resend it to a master. In the next chapter, we're going to
look at how we can even restore state for actors from a persistent store using the

 module so that we can even recover from a JobReceptionist crash.akka-persistence

14.4 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=835

391

http://www.manning-sandbox.com/forum.jspa?forumID=835

	Akka in Action MEAP v13
	Copyright
	Table of Contents
	Chapter 1: Introducing Akka
	1.1 What is Akka
	1.1.1 Simpler Concurrency
	1.1.2 Fault Tolerance
	1.1.3 Scale Up and Out

	1.2 About Akka Actors and ActorSystems
	1.3 Summary

	Chapter 2: Up and Running
	2.1 Clone, Build and Test Interface
	2.1.1 Build with SBT
	2.1.2 Fast forward to the GoTicks.com REST server

	2.2 Explore the Actors in the App
	2.2.1 Structure of the App
	2.2.2 The Actor that handles the sale: TicketSeller
	2.2.3 BoxOffice
	2.2.4 REST Interface

	2.3 Into the Cloud
	2.3.1 Create the App on Heroku
	2.3.2 Deploy and Run on Heroku

	2.4 Summary

	Chapter 3: Test Driven Development with Actors
	3.1 Testing Actors
	3.1.1 Preparing to Test

	3.2 One-way messages
	3.2.1 SilentActor Examples
	3.2.2 SendingActor Example
	3.2.3 SideEffectingActor Example

	3.3 Two-way messages
	3.4 Summary

	Chapter 4: Fault tolerance
	4.1 What is fault tolerance (and what it isn't)
	4.1.1 Plain old objects and exceptions
	4.1.2 Let it crash

	4.2 Actor life-cycle
	4.2.1 Start event
	4.2.2 Stop event
	4.2.3 Restart event
	4.2.4 Putting the Life cycle Pieces Together
	4.2.5 Monitoring the lifecycle

	4.3 Supervision
	4.3.1 Supervisor hierarchy
	4.3.2 Predefined strategies
	4.3.3 Custom Strategies

	4.4 Summary

	Chapter 5: Futures
	5.1 The use case for Futures
	5.2 In the Future nobody blocks
	5.3 Futuristic Errors
	5.4 Combining Futures
	5.5 Futures and Actors
	5.6 Summary

	Chapter 6: Your first Distributed Akka App
	6.1 Scaling out
	6.1.1 Common network terminology
	6.1.2 Reasons for a distributed programming model

	6.2 Scaling Out with Remoting
	6.2.1 Making the GoTicks App Distributed
	6.2.2 Remote REPL action
	6.2.3 Remote Lookup
	6.2.4 Remote Deployment
	6.2.5 Multi-JVM testing

	6.3 Summary

	Chapter 7: Configuration, Logging and Deployment
	7.1 Configuration
	7.1.1 Trying Out Akka Configuration
	7.1.2 Using Defaults
	7.1.3 Akka Configuration
	7.1.4 Multiple systems

	7.2 Logging
	7.2.1 Logging in an Akka Application
	7.2.2 Using Logging
	7.2.3 Controlling Akka's logging

	7.3 Deploying Actor-based Applications
	7.3.1 Stand-alone application
	7.3.2 Akka with a web application

	7.4 Summary

	Chapter 8: System Structure
	8.1 Pipes and Filters
	8.1.1 Enterprise integration pattern Pipes and Filters
	8.1.2 Pipes and filters in Akka

	8.2 Scatter-Gather Pattern
	8.2.1 Applicability
	8.2.2 Parallel tasks with Akka
	8.2.3 Implement the scatter component using the
 Recipient list
	8.2.4 Implementing the gather component with the
 Aggregator pattern
	8.2.5 Combining the components into the
 Scatter-Gather Pattern

	8.3 Summary

	Chapter 10: Message Channels
	10.1 Channel types
	10.1.1 Point to point
	10.1.2 Publish subscribe

	10.2 Specialized channels
	10.2.1 Dead letter
	10.2.2 Guaranteed delivery

	10.3 Summary

	Chapter 11: Finite State Machines and Agents
	11.1 Using a Finite State Machine
	11.1.1 Quick introduction of Finite State
 Machine
	11.1.2 Creating an FSM model

	11.2 Implementation of an FSM model
	11.2.1 Implementing transitions
	11.2.2 Implementing the entry actions
	11.2.3 Timers within FSM
	11.2.4 Termination of FSM

	11.3 Implement Shared state using agents
	11.3.1 Simple Shared state with agents
	11.3.2 Waiting for the state update

	11.4 Summary

	Chapter 12: Working with Transactions
	12.1 Software Transactional Memory
	12.1.1 Protecting shared data
	12.1.2 Using the STM transactions

	12.2 Agents within transactions
	12.2.1 Reading from Agents within a
 transaction
	12.2.2 Updating Agents within a
 transaction

	12.3 Actors within transactions
	12.3.1 Coordinated transactions
	12.3.2 Creating transactors

	12.4 Summary

	Chapter 13: Integration
	13.1 Message endpoints
	13.1.1 Normalizer
	13.1.2 Canonical Data Model

	13.2 Implementing endpoints using the Camel
 Framework
	13.2.1 Implement a consumer endpoint receiving
 messages from an external System
	13.2.2 Implement a producer endpoint sending
 messages to an external System

	13.3 Example of implementing a REST
 interface
	13.3.1 The REST example
	13.3.2 Implementing a Rest endpoint with
 Spray

	13.4 Summary

	Chapter 14: Clustering
	14.1 Why use Clustering?
	14.2 Cluster Membership
	14.2.1 Joining the cluster
	14.2.2 Leaving the cluster

	14.3 Clustered Job Processing
	14.3.1 Starting the Cluster
	14.3.2 Work Distribution using Routers
	14.3.3 Resilient Jobs
	14.3.4 Testing the Cluster

	14.4 Summary

