mirror of
https://github.com/boostorg/more.git
synced 2025-01-06 01:10:06 +08:00
8a46272a69
[SVN r34653]
329 lines
12 KiB
HTML
329 lines
12 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||
<html>
|
||
|
||
<head>
|
||
<meta http-equiv="Content-Type"
|
||
content="text/html; charset=iso-8859-1">
|
||
<meta name="Template"
|
||
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
|
||
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
|
||
<title></title>
|
||
</head>
|
||
|
||
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
|
||
|
||
<h2 align="center">Coding Guidelines for Integral Constant
|
||
Expressions</h2>
|
||
|
||
<p>Integral Constant Expressions are used in many places in C++;
|
||
as array bounds, as bit-field lengths, as enumerator
|
||
initialisers, and as arguments to non-type template parameters.
|
||
However many compilers have problems handling integral constant
|
||
expressions; as a result of this, programming using non-type
|
||
template parameters in particular can be fraught with difficulty,
|
||
often leading to the incorrect assumption that non-type template
|
||
parameters are unsupported by a particular compiler. This short
|
||
article is designed to provide a set of guidelines and
|
||
workarounds that, if followed, will allow integral constant
|
||
expressions to be used in a manner portable to all the compilers
|
||
currently supported by boost. Although this article is mainly
|
||
targeted at boost library authors, it may also be useful for
|
||
users who want to understand why boost code is written in a
|
||
particular way, or who want to write portable code themselves.</p>
|
||
|
||
<h3>What is an Integral Constant Expression?</h3>
|
||
|
||
<p>Integral constant expressions are described in section 5.19 of
|
||
the standard, and are sometimes referred to as "compile time
|
||
constants". An integral constant expression can be one of
|
||
the following:</p>
|
||
|
||
<ol>
|
||
<li>A literal integral value, for example 0u or 3L.</li>
|
||
<li>An enumerator value.</li>
|
||
<li>Global integral constants, for example: <font
|
||
face="Courier New"><code><br>
|
||
</code></font><code>const int my_INTEGRAL_CONSTANT = 3;</code></li>
|
||
<li>Static member constants, for example: <br>
|
||
<code>struct myclass<br>
|
||
{ static const int value = 0; };</code></li>
|
||
<li>Member enumerator values, for example:<br>
|
||
<code>struct myclass<br>
|
||
{ enum{ value = 0 }; };</code></li>
|
||
<li>Non-type template parameters of integral or enumerator
|
||
type.</li>
|
||
<li>The result of a <code>sizeof</code> expression, for
|
||
example:<br>
|
||
<code>sizeof(foo(a, b, c))</code></li>
|
||
<li>The result of a <code>static_cast</code>, where the
|
||
target type is an integral or enumerator type, and the
|
||
argument is either another integral constant expression,
|
||
or a floating-point literal.</li>
|
||
<li>The result of applying a binary operator to two integral
|
||
constant expressions: <br>
|
||
<code>INTEGRAL_CONSTANT1 op INTEGRAL_CONSTANT2 <br>
|
||
p</code>rovided that the operator is not an assignment
|
||
operator, or comma operator.</li>
|
||
<li>The result of applying a unary operator to an integral
|
||
constant expression: <br>
|
||
<code>op INTEGRAL_CONSTANT1<br>
|
||
</code>provided that the operator is not the increment or
|
||
decrement operator.</li>
|
||
</ol>
|
||
|
||
<p> </p>
|
||
|
||
<h3>Coding Guidelines</h3>
|
||
|
||
<p>The following guidelines are declared in no particular order (in
|
||
other words you need to obey all of them - sorry!), and may also
|
||
be incomplete, more guidelines may be added as compilers change
|
||
and/or more problems are encountered.</p>
|
||
|
||
<p><b><i>When declaring constants that are class members always
|
||
use the macro BOOST_STATIC_CONSTANT.</i></b></p>
|
||
|
||
<pre>template <class T>
|
||
struct myclass
|
||
{
|
||
BOOST_STATIC_CONSTANT(int, value = sizeof(T));
|
||
};</pre>
|
||
|
||
<p>Rationale: not all compilers support inline initialisation of
|
||
member constants, others treat member enumerators in strange ways
|
||
(they're not always treated as integral constant expressions).
|
||
The BOOST_STATIC_CONSTANT macro uses the most appropriate method
|
||
for the compiler in question.</p>
|
||
|
||
<p><b><i>Don't declare integral constant expressions whose type
|
||
is wider than int.</i></b></p>
|
||
|
||
<p>Rationale: while in theory all integral types are usable in
|
||
integral constant expressions, in practice many compilers limit
|
||
integral constant expressions to types no wider than <b>int</b>.</p>
|
||
|
||
<p><b><i>Don't use logical operators in integral constant
|
||
expressions; use template meta-programming instead.</i></b></p>
|
||
|
||
<p>The header <boost/type_traits/ice.hpp> contains a number
|
||
of workaround templates, that fulfil the role of logical
|
||
operators, for example instead of:</p>
|
||
|
||
<p><code>INTEGRAL_CONSTANT1 || INTEGRAL_CONSTANT2</code></p>
|
||
|
||
<p>Use:</p>
|
||
|
||
<p><code>::boost::type_traits::ice_or<INTEGRAL_CONSTANT1,INTEGRAL_CONSTANT2>::value</code></p>
|
||
|
||
<p>Rationale: A number of compilers (particularly the Borland and
|
||
Microsoft compilers), tend to not to recognise integral constant
|
||
expressions involving logical operators as genuine integral
|
||
constant expressions. The problem generally only shows up when
|
||
the integral constant expression is nested deep inside template
|
||
code, and is hard to reproduce and diagnose.</p>
|
||
|
||
<p><b><i>Don't use any operators in an integral constant
|
||
expression used as a non-type template parameter</i></b></p>
|
||
|
||
<p>Rather than:</p>
|
||
|
||
<p><code>typedef myclass<INTEGRAL_CONSTANT1 ==
|
||
INTEGRAL_CONSTANT2> mytypedef;</code></p>
|
||
|
||
<p>Use:</p>
|
||
|
||
<p><code>typedef myclass< some_symbol> mytypedef;</code></p>
|
||
|
||
<p>Where <code>some_symbol</code> is the symbolic name of a an
|
||
integral constant expression whose value is <code>(INTEGRAL_CONSTANT1
|
||
== INTEGRAL_CONSTANT2).</code></p>
|
||
|
||
<p>Rationale: the older EDG based compilers (some of which are
|
||
used in the most recent version of that platform's compiler),
|
||
don't recognise expressions containing operators as non-type
|
||
template parameters, even though such expressions can be used as
|
||
integral constant expressions elsewhere.</p>
|
||
|
||
<p><b><i>Always use a fully qualified name to refer to an
|
||
integral constant expression.</i></b></p>
|
||
|
||
<p>For example:</p>
|
||
|
||
<pre><code>typedef</code> myclass< ::boost::is_integral<some_type>::value> mytypedef;</pre>
|
||
|
||
<p>Rationale: at least one compiler (Borland's), doesn't
|
||
recognise the name of a constant as an integral constant
|
||
expression unless the name is fully qualified (which is to say it
|
||
starts with ::).</p>
|
||
|
||
<p><b><i>Always leave a space after a '<' and before '::'</i></b></p>
|
||
|
||
<p>For example:</p>
|
||
|
||
<pre><code>typedef</code> myclass< ::boost::is_integral<some_type>::value> mytypedef;
|
||
^
|
||
ensure there is space here!</pre>
|
||
|
||
<p>Rationale: <: is a legal digraph in it's own right, so <::
|
||
is interpreted as the same as [:.</p>
|
||
|
||
<p><b><i>Don't use local names as integral constant expressions</i></b></p>
|
||
|
||
<p>Example:</p>
|
||
|
||
<pre>template <class T>
|
||
struct foobar
|
||
{
|
||
BOOST_STATIC_CONSTANT(int, temp = computed_value);
|
||
typedef myclass<temp> mytypedef; // error
|
||
};</pre>
|
||
|
||
<p>Rationale: At least one compiler (Borland's) doesn't accept
|
||
this.</p>
|
||
|
||
<p>Although it is possible to fix this by using:</p>
|
||
|
||
<pre>template <class T>
|
||
struct foobar
|
||
{
|
||
BOOST_STATIC_CONSTANT(int, temp = computed_value);
|
||
typedef foobar self_type;
|
||
typedef myclass<(self_type::temp)> mytypedef; // OK
|
||
};</pre>
|
||
|
||
<p>This breaks at least one other compiler (VC6), it is better to
|
||
move the integral constant expression computation out into a
|
||
separate traits class:</p>
|
||
|
||
<pre>template <class T>
|
||
struct foobar_helper
|
||
{
|
||
BOOST_STATIC_CONSTANT(int, temp = computed_value);
|
||
};
|
||
|
||
template <class T>
|
||
struct foobar
|
||
{
|
||
typedef myclass< ::foobar_helper<T>::value> mytypedef; // OK
|
||
};</pre>
|
||
|
||
<p><b><i>Don't use dependent default parameters for non-type
|
||
template parameters.</i></b></p>
|
||
|
||
<p>For example:</p>
|
||
|
||
<pre>template <class T, int I = ::boost::is_integral<T>::value> // Error can't deduce value of I in some cases.
|
||
struct foobar;</pre>
|
||
|
||
<p>Rationale: this kind of usage fails for Borland C++. Note that
|
||
this is only an issue where the default value is dependent upon a
|
||
previous template parameter, for example the following is fine:</p>
|
||
|
||
<pre>template <class T, int I = 3> // OK, default value is not dependent
|
||
struct foobar;</pre>
|
||
|
||
<p> </p>
|
||
|
||
<h3>Unresolved Issues</h3>
|
||
|
||
<p>The following issues are either unresolved or have fixes that
|
||
are compiler specific, and/or break one or more of the coding
|
||
guidelines.</p>
|
||
|
||
<p><b><i>Be careful of numeric_limits</i></b></p>
|
||
|
||
<p>There are three issues here:</p>
|
||
|
||
<ol>
|
||
<li>The header <limits> may be absent - it is
|
||
recommended that you never include <limits>
|
||
directly but use <boost/pending/limits.hpp> instead.
|
||
This header includes the "real" <limits>
|
||
header if it is available, otherwise it supplies it's own
|
||
std::numeric_limits definition. Boost also defines the
|
||
macro BOOST_NO_LIMITS if <limits> is absent.</li>
|
||
<li>The implementation of std::numeric_limits may be defined
|
||
in such a way that its static-const members may not be
|
||
usable as integral constant expressions. This contradicts
|
||
the standard but seems to be a bug that affects at least
|
||
two standard library vendors; boost defines
|
||
BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS in <boost/config.hpp>
|
||
when this is the case.</li>
|
||
<li>There is a strange bug in VC6, where the members of std::numeric_limits
|
||
can be "prematurely evaluated" in template
|
||
code, for example:</li>
|
||
</ol>
|
||
|
||
<pre>template <class T>
|
||
struct limits_test
|
||
{
|
||
BOOST_STATIC_ASSERT(::std::numeric_limits<T>::is_specialized);
|
||
};</pre>
|
||
|
||
<p>This code fails to compile with VC6 even though no instances
|
||
of the template are ever created; for some bizarre reason <code>::std::numeric_limits<T>::is_specialized
|
||
</code>always evaluates to false, irrespective of what the
|
||
template parameter T is. The problem seems to be confined to
|
||
expressions which depend on std::numeric_limts: for example if
|
||
you replace <code>::std::numeric_limits<T>::is_specialized</code>
|
||
with <code>::boost::is_arithmetic<T>::value</code>, then
|
||
everything is fine. The following workaround also works but
|
||
conflicts with the coding guidelines:</p>
|
||
|
||
<pre>template <class T>
|
||
struct limits_test
|
||
{
|
||
BOOST_STATIC_CONSTANT(bool, check = ::std::numeric_limits<T>::is_specialized);
|
||
BOOST_STATIC_ASSERT(check);
|
||
};</pre>
|
||
|
||
<p>So it is probably best to resort to something like this:</p>
|
||
|
||
<pre>template <class T>
|
||
struct limits_test
|
||
{
|
||
#ifdef BOOST_MSVC
|
||
BOOST_STATIC_CONSTANT(bool, check = ::std::numeric_limits<T>::is_specialized);
|
||
BOOST_STATIC_ASSERT(check);
|
||
#else
|
||
BOOST_STATIC_ASSERT(::std::numeric_limits<T>::is_specialized);
|
||
#endif
|
||
};</pre>
|
||
|
||
<p><b><i>Be careful how you use the sizeof operator</i></b></p>
|
||
|
||
<p>As far as I can tell, all compilers treat sizeof expressions
|
||
correctly when the argument is the name of a type (or a template-id),
|
||
however problems can occur if:</p>
|
||
|
||
<ol>
|
||
<li>The argument is the name of a member-variable, or a local
|
||
variable (code may not compile with VC6).</li>
|
||
<li>The argument is an expression which involves the creation
|
||
of a temporary (code will not compile with Borland C++).</li>
|
||
<li>The argument is an expression involving an overloaded
|
||
function call (code compiles but the result is a garbage
|
||
value with Metroworks C++).</li>
|
||
</ol>
|
||
|
||
<p><b><i>Don't use boost::is_convertible unless you have to</i></b></p>
|
||
|
||
<p>Since is_convertible is implemented in terms of the sizeof
|
||
operator, it consistently gives the wrong value when used with
|
||
the Metroworks compiler, and may not compile with the Borland's
|
||
compiler (depending upon the template arguments used).</p>
|
||
|
||
<hr>
|
||
|
||
<p><i><EFBFBD> Copyright Dr John Maddock 2001</i></p>
|
||
<p><i>Distributed under the Boost Software License, Version 1.0. (See
|
||
accompanying file <a href="../LICENSE_1_0.txt">LICENSE_1_0.txt</a> or copy
|
||
at <a href=
|
||
"http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</a>)</i></p>
|
||
|
||
<p> </p>
|
||
|
||
<p> </p>
|
||
</body>
|
||
</html>
|