From 7691bb2713de48cda2b4ce1e71d03b5e122b958f Mon Sep 17 00:00:00 2001 From: John Maddock <john@johnmaddock.co.uk> Date: Mon, 30 Apr 2001 11:29:06 +0000 Subject: [PATCH] shortened name of integral constant guidelines docs [SVN r9994] --- index.htm | 6 +- int_const_guidelines.htm | 323 +++++++++++++++++++++++++++++++++++++++ 2 files changed, 326 insertions(+), 3 deletions(-) create mode 100644 int_const_guidelines.htm diff --git a/index.htm b/index.htm index d1cb27e..95b1fc2 100644 --- a/index.htm +++ b/index.htm @@ -96,7 +96,7 @@ content="text/html; charset=iso-8859-1"> <p><a href="microsoft_vcpp.html"><b>Portability Hints: Microsoft VC++ 6.0 SP4</b></a> describes Microsoft C++ portability issues, with suggested workarounds.</p> - <p><a href="integral_constant_guidelines.htm"><strong>Coding + <p><a href="int_const_guidelines.htm"><strong>Coding Guidelines for Integral Constant Expressions</strong></a> describes how to work through the maze of compiler related bugs surrounding this tricky topic.</p> @@ -119,7 +119,7 @@ content="text/html; charset=iso-8859-1"> <hr> <p>Revised <!--webbot bot="Timestamp" startspan s-type="EDITED" -s-format="%d %B, %Y" -->19 April, 2001<!--webbot bot="Timestamp" -i-checksum="29823" endspan --></p> +s-format="%d %B, %Y" -->30 April, 2001<!--webbot bot="Timestamp" +i-checksum="29807" endspan --></p> </body> </html> diff --git a/int_const_guidelines.htm b/int_const_guidelines.htm new file mode 100644 index 0000000..a0e7d49 --- /dev/null +++ b/int_const_guidelines.htm @@ -0,0 +1,323 @@ +<html> + +<head> +<meta http-equiv="Content-Type" +content="text/html; charset=iso-8859-1"> +<meta name="Template" +content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot"> +<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0"> +<title></title> +</head> + +<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080"> + +<h2 align="center">Coding Guidelines for Integral Constant +Expressions</h2> + +<p>Integral Constant Expressions are used in many places in C++; +as array bounds, as bit-field lengths, as enumerator +initialisers, and as arguments to non-type template parameters. +However many compilers have problems handling integral constant +expressions; as a result of this, programming using non-type +template parameters in particular can be fraught with difficulty, +often leading to the incorrect assumption that non-type template +parameters are unsupported by a particular compiler. This short +article is designed to provide a set of guidelines and +workarounds that, if followed, will allow integral constant +expressions to be used in a manner portable to all the compilers +currently supported by boost. Although this article is mainly +targeted at boost library authors, it may also be useful for +users who want to understand why boost code is written in a +particular way, or who want to write portable code themselves.</p> + +<h3>What is an Integral Constant Expression?</h3> + +<p>Integral constant expressions are described in section 5.19 of +the standard, and are sometimes referred to as "compile time +constants". An integral constant expression can be one of +the following:</p> + +<ol> + <li>A literal integral value, for example 0u or 3L.</li> + <li>An enumerator value.</li> + <li>Global integral constants, for example: <font + face="Courier New"><code><br> + </code></font><code>const int my_INTEGRAL_CONSTANT = 3;</code></li> + <li>Static member constants, for example: <br> + <code>struct myclass<br> + { static const int value = 0; };</code></li> + <li>Member enumerator values, for example:<br> + <code>struct myclass<br> + { enum{ value = 0 }; };</code></li> + <li>Non-type template parameters of integral or enumerator + type.</li> + <li>The result of a <code>sizeof</code> expression, for + example:<br> + <code>sizeof(foo(a, b, c))</code></li> + <li>The result of a <code>static_cast</code>, where the + target type is an integral or enumerator type, and the + argument is either another integral constant expression, + or a floating-point literal.</li> + <li>The result of applying a binary operator to two integral + constant expressions: <br> + <code>INTEGRAL_CONSTANT1 op INTEGRAL_CONSTANT2 <br> + p</code>rovided that the operator is not an assignment + operator, or comma operator.</li> + <li>The result of applying a unary operator to an integral + constant expression: <br> + <code>op INTEGRAL_CONSTANT1<br> + </code>provided that the operator is not the increment or + decrement operator.</li> +</ol> + +<p> </p> + +<h3>Coding Guidelines</h3> + +<p>The following guidelines are declared in no particular order (in +other words you need to obey all of them - sorry!), and may also +be incomplete, more guidelines may be added as compilers change +and/or more problems are encountered.</p> + +<p><b><i>When declaring constants that are class members always +use the macro BOOST_STATIC_CONSTANT.</i></b></p> + +<pre>template <class T> +struct myclass +{ + BOOST_STATIC_CONSTANT(int, value = sizeof(T)); +};</pre> + +<p>Rationale: not all compilers support inline initialisation of +member constants, others treat member enumerators in strange ways +(they're not always treated as integral constant expressions). +The BOOST_STATIC_CONSTANT macro uses the most appropriate method +for the compiler in question.</p> + +<p><b><i>Don't declare integral constant expressions whose type +is wider than int.</i></b></p> + +<p>Rationale: while in theory all integral types are usable in +integral constant expressions, in practice many compilers limit +integral constant expressions to types no wider than <b>int</b>.</p> + +<p><b><i>Don't use logical operators in integral constant +expressions; use template meta-programming instead.</i></b></p> + +<p>The header <boost/type_traits/ice.hpp> contains a number +of workaround templates, that fulfil the role of logical +operators, for example instead of:</p> + +<p><code>INTEGRAL_CONSTANT1 | INTEGRAL_CONSTANT2</code></p> + +<p>Use:</p> + +<p><code>::boost::type_traits::ice_or<INTEGRAL_CONSTANT1,INTEGRAL_CONSTANT2>::value</code></p> + +<p>Rationale: A number of compilers (particularly the Borland and +Microsoft compilers), tend to not to recognise integral constant +expressions involving logical operators as genuine integral +constant expressions. The problem generally only shows up when +the integral constant expression is nested deep inside template +code, and is hard to reproduce and diagnose.</p> + +<p><b><i>Don't use any operators in an integral constant +expression used as a non-type template parameter</i></b></p> + +<p>Rather than:</p> + +<p><code>typedef myclass<INTEGRAL_CONSTANT1 == +INTEGRAL_CONSTANT2> mytypedef;</code></p> + +<p>Use:</p> + +<p><code>typedef myclass< some_symbol> mytypedef;</code></p> + +<p>Where <code>some_symbol</code> is the symbolic name of a an +integral constant expression whose value is <code>(INTEGRAL_CONSTANT1 +== INTEGRAL_CONSTANT2).</code></p> + +<p>Rationale: the older EDG based compilers (some of which are +used in the most recent version of that platform's compiler), +don't recognise expressions containing operators as non-type +template parameters, even though such expressions can be used as +integral constant expressions elsewhere.</p> + +<p><b><i>Always use a fully qualified name to refer to an +integral constant expression.</i></b></p> + +<p>For example:</p> + +<pre><code>typedef</code> myclass< ::boost::is_integral<some_type>::value> mytypedef;</pre> + +<p>Rationale: at least one compiler (Borland's), doesn't +recognise the name of a constant as an integral constant +expression unless the name is fully qualified (which is to say it +starts with ::).</p> + +<p><b><i>Always leave a space after a '<' and before '::'</i></b></p> + +<p>For example:</p> + +<pre><code>typedef</code> myclass< ::boost::is_integral<some_type>::value> mytypedef; + ^ + ensure there is space here!</pre> + +<p>Rationale: <: is a legal digraph in it's own right, so <:: +is interpreted as the same as [:.</p> + +<p><b><i>Don't use local names as integral constant expressions</i></b></p> + +<p>Example:</p> + +<pre>template <class T> +struct foobar +{ + BOOST_STATIC_CONSTANT(int, temp = computed_value); + typedef myclass<temp> mytypedef; // error +};</pre> + +<p>Rationale: At least one compiler (Borland's) doesn't accept +this.</p> + +<p>Although it is possible to fix this by using:</p> + +<pre>template <class T> +struct foobar +{ + BOOST_STATIC_CONSTANT(int, temp = computed_value); + typedef foobar self_type; + typedef myclass<(self_type::temp)> mytypedef; // OK +};</pre> + +<p>This breaks at least one other compiler (VC6), it is better to +move the integral constant expression computation out into a +separate traits class:</p> + +<pre>template <class T> +struct foobar_helper +{ + BOOST_STATIC_CONSTANT(int, temp = computed_value); +}; + +template <class T> +struct foobar +{ + typedef myclass< ::foobar_helper<T>::value> mytypedef; // OK +};</pre> + +<p><b><i>Don't use dependent default parameters for non-type +template parameters.</i></b></p> + +<p>For example:</p> + +<pre>template <class T, int I = ::boost::is_integral<T>::value> // Error can't deduce value of I in some cases. +struct foobar;</pre> + +<p>Rationale: this kind of usage fails for Borland C++. Note that +this is only an issue where the default value is dependent upon a +previous template parameter, for example the following is fine:</p> + +<pre>template <class T, int I = 3> // OK, default value is not dependent +struct foobar;</pre> + +<p> </p> + +<h3>Unresolved Issues</h3> + +<p>The following issues are either unresolved or have fixes that +are compiler specific, and/or break one or more of the coding +guidelines.</p> + +<p><b><i>Be careful of numeric_limits</i></b></p> + +<p>There are three issues here:</p> + +<ol> + <li>The header <limits> may be absent - it is + recommended that you never include <limits> + directly but use <boost/pending/limits.hpp> instead. + This header includes the "real" <limits> + header if it is available, otherwise it supplies it's own + std::numeric_limits definition. Boost also defines the + macro BOOST_NO_LIMITS if <limits> is absent.</li> + <li>The implementation of std::numeric_limits may be defined + in such a way that its static-const members may not be + usable as integral constant expressions. This contradicts + the standard but seems to be a bug that affects at least + two standard library vendors; boost defines + BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS in <boost/config.hpp> + when this is the case.</li> + <li>There is a strange bug in VC6, where the members of std::numeric_limits + can be "prematurely evaluated" in template + code, for example:</li> +</ol> + +<pre>template <class T> +struct limits_test +{ + BOOST_STATIC_ASSERT(::std::numeric_limits<T>::is_specialized); +};</pre> + +<p>This code fails to compile with VC6 even though no instances +of the template are ever created; for some bizarre reason <code>::std::numeric_limits<T>::is_specialized +</code>always evaluates to false, irrespective of what the +template parameter T is. The problem seems to be confined to +expressions which depend on std::numeric_limts: for example if +you replace <code>::std::numeric_limits<T>::is_specialized</code> +with <code>::boost::is_arithmetic<T>::value</code>, then +everything is fine. The following workaround also works but +conflicts with the coding guidelines:</p> + +<pre>template <class T> +struct limits_test +{ + BOOST_STATIC_CONSTANT(bool, check = ::std::numeric_limits<T>::is_specialized); + BOOST_STATIC_ASSERT(check); +};</pre> + +<p>So it is probably best to resort to something like this:</p> + +<pre>template <class T> +struct limits_test +{ +#ifdef BOOST_MSVC + BOOST_STATIC_CONSTANT(bool, check = ::std::numeric_limits<T>::is_specialized); + BOOST_STATIC_ASSERT(check); +#else + BOOST_STATIC_ASSERT(::std::numeric_limits<T>::is_specialized); +#endif +};</pre> + +<p><b><i>Be careful how you use the sizeof operator</i></b></p> + +<p>As far as I can tell, all compilers treat sizeof expressions +correctly when the argument is the name of a type (or a template-id), +however problems can occur if:</p> + +<ol> + <li>The argument is the name of a member-variable, or a local + variable (code may not compile with VC6).</li> + <li>The argument is an expression which involves the creation + of a temporary (code will not compile with Borland C++).</li> + <li>The argument is an expression involving an overloaded + function call (code compiles but the result is a garbage + value with Metroworks C++).</li> +</ol> + +<p><b><i>Don't use boost::is_convertible unless you have to</i></b></p> + +<p>Since is_convertible is implemented in terms of the sizeof +operator, it consistently gives the wrong value when used with +the Metroworks compiler, and may not compile with the Borland's +compiler (depending upon the template arguments used).</p> + +<hr> + +<p>Copyright Dr John Maddock 2001, all rights reserved.</p> + +<p> </p> + +<p> </p> +</body> +</html>